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ABSTRACT 

Given a separable Oflicz sequence space I r we investigate those Orlicz sequence 
spaces If which are isomorphic to subspaces (respectively complemented sub- 
spaces) of lF. We give in particular an example of a reflexive Orlicz sequence 
space which does not contain any lp, 1 < p < ~ ,  as a complemented subspace. 

1. Introduction 

The present paper is a continuation of  [4]. Its main purpose is to investigate 

the structure of  those subspaces of  an Orlicz sequence space which are themselves 

Orlicz sequence spaces. We assume that  the reader is familiar with [-4] and in 

particular with the basic notions related to Orlicz sequence spaces which were 

reviewed in Section 2 of  [4]. Unless stated otherwise we assume that the Orlicz 

functions considered here satisfy the A 2 condition (at 0). 

The first result to be proved here (Theorem 1, Section 2), gives a necessary and 

sufficient condition on f for  l: to be isomorphic to a subspace of  a given Orlicz 

space IF. The condition is t h a t f s h o u l d  be equivalent to a function of  the compact 

convex set Cv, x in C(0,1) (recall that  Cr,, = conv {F(sx)/F(s)}). 
O<s<t  

While the solution to this problem is relatively simple, it seems to be more 

difficult to find a characterization o f t h o s e f  such that l: is isomorphic to a com- 

plemented subspace of  lr. F rom the existence of  the so called "averaging pro- 

jections" (or conditional expectations) it follows immediately that if f is equivalent 

to a function ofEF, 1 = {F(sx)/F(s)}o<s<= x,then l: is isomorphic to a complemented 

subspace of  IF. Is the converse true? We do not  know the answer. The main result 

of  Section 2 is a partial answer to this question. We show that i f f  is "strongly 

non-equivalent" to EF,1 then If is indeed not isomorphic to a complemented 
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subspace of It. The requirement that f be strongly non-equivalent to Er. 1 is a 

quantitative uniformity condition which is stronger then the requirement that f 

is not equivalent to any function of Er,1. 

Section 3 is devoted mainly to the study of some examples. The first two 

examples we consider are Orlicz spaces Ir in which F is given by an explicit 

formula.These examples, besides illustrating results of Section 2 and 1-4-1, show also 

the role of duality arguments in the questions we consider in this paper. The next 

example considered in Section 3 is the Orlicz space constructed in 1-4], in the 

proof of Theorem 3 there. We show, by using the main result of Section 2, that 

this space does not have any/p-space as a complemented subspace. To the best 

of our knowledge this is the first known example ofa  Banach space which contains 

no complemented subspace isomorphic to Co or to some Ip, 1 < p < oo. Though 

this space l M is constructed in a somewhat "artificial" manner it is nevertheless a 

"nice" Banach space from many points of view. It has a symmetric basis and is 

reflexive (actually even uniformly convexifiable). 

The rest of Section 3 is devoted mainly to the investigation of some classes of 

Orlicz sequence spaces. These are the "minimal" Orlicz spaces, some spaces 

obtained by a composition operation from other Orlicz sequence spaces and 

universal Orlicz sequence spaces. All these examples and classes illustrate the 

very rich structure of Orlicz sequence spaces. We are convinced that Orlicz 

sequence spaces will play in the future an important role as test spaces for various 

questions in the isomorphic theory of Banach spaces. The structure of Orlicz 

function spaces is naturally more involved (and interesting) than that of sequence 

spaces. We plan to treat the structure of subspaces of Orlicz function spaces and 

the connection between Orlicz function and sequence spaces in a future paper. 

The last section of this paper is devoted to a discussion of some questions, 

concerning Orlicz sequence spaces and more general spaces with symmetric 

bases, which arise naturally from the results of Sections 2 and 3. 

2. General results 

We begin by proving a theorem which characterizes the functions f such that 

I s is isomorphic to a subspace of a given Orlicz sequence space lr. 

THEOREM 1. Let F be an Orlicz function satisfying the A 2 condition. An 

Orlicz sequence space l r is isomorphic to a subspace of lF i f  and only i f  f is 

equivalent to some function in Cr,l = cony {F(sx)/F(s)}. 
O<s_<l 
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PROOF. The necessity has been proved by Lindberg [3]. Let us briefly recall 

the proof. Let T be an isomorphism from ly into IF and let {ui} and {ei} denote 

the unit vector bases of these spaces. By a standard procedure one can choose a 

subsequence (ui.} of {u,} and a sequence of unit vectors iv,} in l F such that 

= v'p.§ ~ o for suitable (21} and a suitable l[ v , -  Tu,./[1 T ui. II [1 < 2- , ,  and v, = ,.,, =p~+l.~,,.i 
increasing sequence (p,} of  integers.* Letg , (x)= vp.+, F(2ix), n = 1,2, .. . ,0 -< x z-'i=p,,+ l 

=< 1. Since 1 = [Iv.II = Ft2a, ,,, it follows that g, ECr,t  for every n. Let g 

be a limit point of {g,} in the compact set Cr.1. It is easy to verify that  a series 
co Y"~=I ~iu~ converges iff E~ = x9(1 ~1) < GO, i.e. that  g is equivalent to f .  

We prove now the converse. Assume that f e  Cr,1. Since the extreme points of 

Cr, 1 are contained in the compact set EF,1 we get, by the Krein-Milman theorem, 

that  / *  

f ( x )  = } r x)d#(r 0 < x < 1 
d E  

for some probability measure # on EF, 1. Set 

Ee.t = {F(sx)/F(s)}o<~t, 0 < t < 1; E r = ["] Er, t 
t>O 

and let fi = #(Er). Then f ( x )  = fig(x) + (1 - fi)h(x) where g e CF = c o n v  E r and 

f' h(x) = F(sx)/F(s)dv(s) 
0 

for some probability measure v on [0, 1] with v({0}) = 0. (Iff i  = 0, respectively 1, 

then g respectively h do not appear.) The argument used in the proof of  Theorem 1 

of [4] shows that there exists a normalized block basis (vj} of  the unit vector basis 

(ei} of Iv such that a series ]~o=,ajvj converges iff ~j  = 1g(I j I) < oo. 

Since F satisfies the A z condition it follows immediately that h(x) is equivalent 

to the Orlicz function ho(x) defined by 

ho(x) = ~ VkF(2-kx)/F(2-R); v k = v [2 -(k+l), 2-k]. 
k = 0  

Put 2k = Vk/F(2-k), k = 1,2, "-', and let ko be the smallest index such that 2ko ~ 0. 

Let a be the set of all integers k for which 2ko < 2~. Then 

Y~ 2kF(2-kx)<__<_ ho(x) < ~ 2kF(2-kx) +2k o ~ F(2-gx) < 
kerr k e a  k = k o + l  

oo 

< ~, 2kF(2 -kx) + 2koF(2-k~ ~, 2-1 5 2 ~, 2kF(2-kx). 
k ~ a  j = l  k ~ a  

* We  assume ,  as we m a y  wi thout  loss o f  generality, tha t  2~ :> 0 for all i. 
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(Recall that, by convexity, F(~y) < ofF(y) whenever 0 -< ~, y < 1.) Since the 2 k for 

kerr are bounded from below by the positive number 2go it follows (by multi- 

plying by /~ko 1 and  replacing each coefficient ,~k/,~,ko by the integer [2 k /2ko]) that 

ho(x) is equivalent to a function h,(x) = Y~=o nkF(2-kx) with {nk} all integers. 

oo A o~ Let now {Aj}j=I be disjoint infinite sets of  integers and let { j,k}k=o be a 

disjoint partition of Aj so that  Aj, k has exactly nk elements ( j ,k  = 1,2,...,). Put 

wj = ~ 2 -k vZ e i j = l , 2 , . . . ,  
k = O  i~ Aj,k 

where, as before, {ei} denotes the unit vector basis in IF. Notice that the series 

defining wj converges in l F since ~,~=onkF(2 -k) = h i ( l ) <  oo. MoreOver, the 

same argum:nt shows that a series Y~.=l~jwj converges iff ~ = l h l ( l ~ j ] ) <  ~ ,  

i.e. iff Ejoo__ ~ h([~j[) < oo. 

Returning to the vectors vj defined in the beginning of  the proof in connection 

with the function 9 we may clearly assume that the support of  vj (i.e. the set of  i 

such that  ei appears in the representation of vj in terms of the unit vector basis) 

is disjoint from the support of  wr, for all j and m. I f  we assume this, then 

Ej~=l~j(vj + w j) converges in IF iff Y~j~I ~jVj and Y~j~l~jWj both converge, 

that is iff ~ j ~  g(l Jl) < oo and Y,j~ h([c~i [) < oo. In other words Ej~ ,  ~j(vj + w j) 

converges iff < oo and thus the closed linear span of  {vj + wj}j~=~ 

is isomorphic to If. Q.E.D- 

The dual version of  Theorem 1 gives a characterization of  the Orlicz sequence 

spaces If which are isomorphic to quotient spaces of  It. Before stating this refor- 

mulation of  Theorem 1, let us recall some known facts concerning duality in 

Orlicz sequence spaces (a general reference for these facts is [2] or [3]). I f  Iv is a 

separable Orlicz sequence space (i.e. if F satisfies A:) then the dual space Iv is 

isomorphic to another Orlicz sequence space which we denote by lv,. Here F* 

is defined by F*(s) = sup {ts - F(t), 0 < t < oo } and is called the complementary 

Orlicz function to F. (The definition of F* requires F to be defined for all t > 0. 

I f  F is defined only in a neighborhood of 0 we extend it to an Orlicz function F~ 

defined for all t > 0. The special choice of  Fx does not change the equivalence 

class of  F*.) The Orlicz function F* satisfies the A 2 condition (at 0) iff lr is 

reflexive and this is the case iff liminf~.~oxF'(x)/F(x) > 1 (in addition to the 

standing assumption that F itself satisfies A2). 

COROLLARY. Let lv be a reflexive Orlicz sequence space. Then If is isomorphic 

to a quotient space of l e if  and only if  f *  is equivalent to a function in CF*,I. 



Vol. 11, 1972 ORLICZ SEQUENCE SPACES 359 

This is an immediate consequence of Theorem 1. Let us remark that if l~ is 

not reflexive (but separable) then Ir contains a complemented subspace isomorphic 

to l~ (this follows from a general result ofR. C. James on spaces with unconditional 

bases, cf. also [31). Hence, in this case any separable Banach space is isomorphic 

to a quotient space of lr. 

It follows immediately from the definition of F* that for a, b > 0 [aF(bt)]*(s) 

= aF*(s/ab), and thus [F(xt)/F(x)]*(s) =F*(sF(x) /x) /F(x) ,  0 < x,s. It is 

easily checked that if lr is reflexive then F(x)/x ~ 0 as x -o 0 while F*(F(x)/x)/F(x) 

remains bounded and bounded away from 0. Hence, if lr is reflexive then f is 

equivalent to a function in Er,~ i f f f* is equivalent to a function in Er.,1. In 

other words, (putting, for a set of functions A, A* = { f * ; f ~ A } )  we get that, up 

to equivalence, Er,,1 is equal to Ee*~ and similarly Ee, is equal to E* On the 

other hand, examples 1 and 2 of Section 3 show that in general Cr.,~ respectively 

CF. are different fiom Cr*I respectively Cv*. This observation l~as a bearirg cn the 

question of  complemented subspaces of  l r to which we turn next. 

From Theorem 1 and its Corollary we deduce that if Iv is reflexive, a necessary 

condition o n f  for l: to be isomorphic to a complemented subspace of lp is 

(*) f is equivalent to a function in Cr,1 and also to a function in C~..1. 

It is also easy to give a sufficient condition on f for l: to be isomorphic to a 

complemented subspace of Iv. It is well known (cf. e.g. [51) that if a Banach space 

X has a symmetric basis (ei} then for every block basis {un} of the form 

~p,+ 1 ei, there is a projection (called averaging projection or conditional Un = 0~n / = p ~ + l  

expectation) from X onto the closed linear span of the (u~}. In an Orlicz sequence 

space I e with unit vectors {e~), normalized blocks (u,} as above correspond (via 

the general correspondence between blocks and functions in Cr, 1 which has been 

used in the proof of  Theorem I) to functions in Er : .  Hence (as observed already 

in [3]) l: is isomorphic to a complemented subspace of I r if the following holds 

(*) f is equivalent to a function in Er, A. 

It follows from the discussion above that for reflexive spaces I r (,) ( ) .  This 

implication follows also trivially directly since C**,1 = E**,~ and the latter set, 

is up to equivalence equal to EF,1. 

In some cases (cf. example 1 in Section 3 below) it happens that (*) is equivalent 

to (.'). In such cases each of  (*) and (~) give a necessary and su~cient condition 

on f for ly to be isomorphic to a complemented subspace of lF. In general 
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(:) is strictly stronger than (*). In Section 3 we present an example (example 4) 

in which (*) is not sufficient to ensure that 1r is isomorphic to a complemented 

subspace of  I~. In general it is also quite difficult to check for which f condition (*) 

is satisfied.We turn, therefore, our attention to condition (~) which is often much 

simpler to check. We do not know whether (~) is also a necessary condition. 

The main result of  this section shows that a somewhat weaker version of (.*) 

is already necessary. Let us first write down the negation of (.*) explicitly. Since 

Ep. 1 is a compact set it follows that f is not equivalent to any function in EE,1 iff 

( + )  For every K >_ 1 there exist mr  points xi~(0,1);  i = 1 ,2 , . . . ,mr ,  such 

that for every s ~(0,1) there is at least one index i, 1 < i < mr, for which either 

F(sxi)/F(s) < K - ' f ( x i )  or F(sxl)/F(s ) > K f(xi) .  

DEFINITION 1. Let F be an Orlicz function satisfyin9 the A 2 condition. A 

function f on (0,1) is said to be strongly non-equivalent to Er,1 i f  ( + )  holds 

with the additional requirement that the integers m r can be chosen so that 

mr = o(K ~) as K ~ oo for every o~ > O. 

In terms of  this notion of  strong non-equivalence we can now consider the 

variant of  (**) which gives a neces'sary condition for the existence of  a projection 

from lr on a subspace isomorphic to l:. 

THEOREM 2. Let F be an Orliez function satisfyin9 the A 2 condition and let f 
be an Orlicz function strongly non-equivalent to Ev,1. Then Is is not isomorphic 
to a complemented subspace of It. 

PROOF. Let {ei} be the unit vector basis of  I r. The same argument as the one 

used in the beginning of  the proof  of  Theorem 1 shows that if I: is isomorphic to 

a complemented subspace of  Iv then the following holds: there exists a block 

basic sequence w~= Z j ~ 2 j e j ,  2j => 0,]l wi[] =1,  i = 1,2,..., (where ~ are mutually 

disjoint finite sets of  integers) so that if  we put 9~(x) = ]~j~o, F(2jx) then 

19i(x) - 9(x) I < 2-i,  i = 1,2,-..; 0 < x < 1 for some 9 ~ Cv,1 which is equivalent 

to f ,  and so that  there is a projection P1 from le onto X = span {wl}i~l. 

Since F satisfies the A 2 condition there is a p such that xF'(x) /F(x)  < p for all 

0 < x < 1. It follows that for every G E Cv,1 we have also that xG'(x)/G(x) < p 

and thus by integrating from x to ax with 1 < a < 1/x we get that  

G(ax) /G(x) < a v, G E CF,1, 1 < a <- 1Ix. 

Modifying the values of  F for z > 1 by setting F(z) = 1/F(z-~); z > 1 we can 

easily show that  
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G(ax)/G(x) < aP; G e Cv,1; 

for any a > 1 and x > 0. 

Since f and therefore g is strongly non-equivalent to Ee,1, we can choose a 

number K and mr points Xr~(0,1); r = 1,2, . . . ,m~ such that 

m r / K ' k '  < min(2-a4-v-~ II P111-~' 2 - ' ' " 1 1  P ,  I1-"> 

and having the property that for every s ~(0,1) there exists at least one r; 1 < r 

< m k for which either F(sx,)/F(s) < K-19(xr) or F(sx,)/F(s) > Ko(x~). 
Denote e = minl~,_<.,~{g(x,)} and let i~ be an integer for which 2 - i  < e  if 

i > i,. In the remainder of  the proof  we will concentrate our attention on the 

vectors wi = Ej ~,2jej;  i > i, and on the Orlicz functions 9~(x) with i > i~ for which 
I9 , (x ) -  9(x)l < 2 - i <  e; 0-< x-< 1. 

Let R be a projection of  norm 1 from X onto the closed subspace Xo generated 

by wi;i >_ i,. Obviously, P = RPa is a projection of  norm II P II s II II from the 

whole space Iv onto X 0. 

Now let us split the set a~ into 2ra K disjoint subsets fi[~)and tl~ ") ; r = 1,2, ..., m r; 

i > i~, having the property:  

F(2jx,)/F(ij)  < K-10(x,) ;  j e 3 [  ') }r = 1,2,.-.,m~:; i > i~ 

F(i jx,)  / F(2j) > Kg(x,); j ~ tff  ) 

We have that 

Kg(x,) Z , F(2j) =< ]~ F(2jx,) -<_ 9~(xr) < 9(x,) + e < 29(x,) 
j ~ t l t (  ) j e t h  (r) 

which implies ~ .  (') F(2~) < 2 ]K and thus 

?il K 

~, ~,(,)F(2j)<=2rnr/K; i>=i.. 
r=l j e q  

"~ Y,(') F(2jx); i >  i, then hi(x)/hi(1)~Cr,1; Notice that if we set hi(x) = Z ,=l  - - i ~  = 

i > i, and thus, as we have shown before 

hi(2][PH) <= 2P llPI]'hi(1 ) <- 2 p+l liP, II mK/g; 
The inequality satisfied by the ratio m r / K  leads to h,(2ll P IL) --<- 1; i >_ i,, which 

/ttK ~ .  means that the vectors v~= ]~,=1 ]~j~,(,) 2 j e s ; i > / , h a v e  norms < 1/(2lIP II ). 

Denote u~ r) = ]~j ~ ~,(,) 2~e i; r = 1,2,--., rn K; i > i, and let Q~ be the projection of  

norm 1 from I r onto the closed subspace generated by the vectors e j; j ~ av Then 
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and further 

wt = Pw~ = P ,~" ~') -1-" vi = E Puff  ~ + Pv~ 
r P=l 

mK 
w i = ~,, QiPu} ")+QiPvi; i>-i~. 

r = l  

This implies that: 

rtlK 
~a [] QiPU~r) [I >~- [[ Wi H -- [[ QiPui  I[ ~> 1 - ][ P [[" [I vi I[ > �89 i >= i.. 

r = l  

Hence, for every i > i, there exists at least one index r~; 1 < r~ <= mr,  such that 

II 0,Pu?'ll __> 1/2 mi~ i >  i.. 

Define the scalars c(,,~ n > i, by Pu}")= ~.~=i~ c~i)Wn �9 As is well known (cf. 

e.g. [7-1) the operator D (for diagonal) defined by 

D ~2 ~,,,-" `'') = ~2 o:,c~"wi 
i=i~ i=ir. 

whenever ~,=,~ ~,u~ "') converges, is bounded and IID tl = < IIP It. 

Notice that 

I cI')[ = I] Qieu}")][ > 1/2mK; i >  i, 

which implies that 

q q q 

i c i=i* i=ie 

for every finite set of  scalars ~i; i = i,, i, + 1,..-,q. Choosing q ~ i~ such that 
q -~. 2 < 2i=io g(x,,) < 3 we obtain that 

q 
1 < Z g,(x,,) < 4  

i=i~ 

which means that I1 II >_- 1. Using the previous inequality for ~, = x,, 

we have 

q 

In order to get another estimate for ]l y'q x " ('') -i=,~ ,,-i [] we should not icethat  

q q 
E E F(2jx , , )< K -1 E 9(xr,) • F(2j)<= 3K -1 

i=ic j~ i ( r i )  i f t e  je~l  (rl) 
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Since the function ~/=~ ~3~zl")F(2jx,,x), normalized so that it gets the value 

one for x = 1, belongs to C~,1 it follows that 

q 

II i=ic ~ "~r'Ui" " (r') l < 

and thus 1/2mrll Pt [I <- 3 1/p K-1/p which contradicts the choice of K and m K. 

Q.E.D. 

3. Examples and special classes of Orlicz sequence spaces 

We start by examining examples of Orlicz sequence spaces lv in which F is given 

by an explicit expression. We consider first the most widely used examples of 

Orlicz spaces (besides, of course, the Ip spaces). 

EXAMPLE 1. Let F(x) = xP( - logxy  with 1 < p < ~ and ~ > 0. It is easily 

checked that this function is an Orlicz function on some interval 0 < x < Xo < 1 

and thus can be extended to an Orlicz function on (0, ~) .  Since for all our 

discussion the values of an Orlicz function outside a neighbourhood of 0 are of no 

importance, we define it explicitely only in a suitable neighborhood of 0. (This is 

called the "principal part" of an Orlicz function.) We have that 

F(xt) ( logx~ ~ = xp 
lim F(t) - l i m x  p\I + l o g t ]  
t-~O t-*O 

and thus EF consists only of the function x p, while EF, 1 consists of two equivalence 

classes: x p and functions equivalent to F(x). Also CF, 1 contains only these two 

equivalence classes. Indeed, any function in Cr, t is equivalent to a function in 

C~,xo and CF, xo consists exactly of functions of the form f (x)= S~ ~ F(xt)/F(t)d#(t) 

for some probability measure # on [0, Xo]. (In this integral F(x.O) IF(O) stands for 

xP). For a fixed 0 -<_ x < 1, F(xt)/F(t) is an increasing function of t. Hence for 

such x, F(xox)/F(xo)>f(x)> g[xt,xo]F(xlx)/F(x 1) for every Xl < Xo. Thus, 

unless # is concentrated in the origin, f(x)  is equivalent to F(x). It follows that 

the only Orlicz sequence spaces which are isomorphic to subspaces of IF, are l F 

itself and lp, and both are obviously also isomorphic to complemented subspaces 

of Iv. In order to find the Orlicz sequence spaces which are quotient spaces of l~ 

we pass to the complementary function F* of F. It is easy to show (cf. e.g. [2]) 

that F* is equivalent to a function whose principal part is G(x) = x q] logx ]-,(q-l) 

where q-1 + p-1 = 1. EG and CG consist only of xq.However CG,1 turns out to 
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contain infinitely many equivalent classes. Using, for example, the fact that  for 

O < e < fl = ~(q - 1 )  

\ u - - ~ J  ~ = Y J1/yk 1 + v] - -v~r  CY-~ + ~ as y ~ oo 

we get that  

G(s) sl logs[  '+~ =xq  l o g x + ] o g s ' J  sllogsll+~ 

= xq u + l l o g x ]  u - T ~  

is equivalent to xq( - logx)'. Clearly H~(x)/H~(1)~ Co,1. It follows that lr has 

many Orlicz sequence spacesas quotient spaces e.g. all the space Ixp(_logx) ~ with 

0 < 7 < 0~. It is also clear from the discussion above that for any g ~ Co,1 such 

that g is not equivalent to a function in Eo,~ (i.e. to G itself or x q) l s is isomorphic 

to a subspace of  Io but not to a complemented subspace of l~. This example 

shows among other things how much different Ce,1 and C**~ can be. 

We turn next to an example defined and investigated by Lindberg [3] which 

we would like to investigate here a little further. 

EXAMPLE 2. Let F(x) = x p+si"~l~176 A simple computation shows that if 

p > 1 + ~/2-then F(x) is an Orlicz function in some interval [0,Xo] with Xo > O. 

Put 

U(x) = xF' (x)  /F(x) = p + s in ( l og ( -  logx)) + c o s ( l o g ( -  logx)) 

Then for any 6 > 0, limt_~o(U(tx) - U(t)) = 0 uniformly for x in [6,1]. It follows 

easily that whenever {t,) is a sequence converging to 0 with limn.oo U(tn) = s then 

F(xt~)/F(t,) converges uniformly to x ~. All these observations are due to 

Lindberg [3]. 

The set Er  consists thus exactly of  the functions x ~ with s ranging over the 

interval [p - n / 2 ,  p + ~/2] while the set Cr consists of all the functions f ( x )  

which can be represented as 

f P+~/2 
f ( x )  = xSd#(s); 0 <_ x < 1 

dp-42 

for some probability measure ]~ on [p - ~2,  p + x/2]. By taking, for example, # 

to be uniformly distributed on It, p + x/2] we get a function equivalent to 

- xt/ logx.  
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A simple computation shows that if f e  Cr then lira,_.0 f ( t x ) / f ( t )=  x ~ where 

is the smallest number in the support of the measure # representing f .  It follows 

sn particular that F is not equivalent to any function in Cr and thus according to 

Theorem 2 of [4], the space lr has up to equivalence a unique symmetric basis 

(i.e. if IF is isomorphic to some 1~ then G must be equivalent to F). 

This example shows also that in general Ce and Cr'. are different (in Example 1 

both sets consisted of  the same single element). We shall show that i f f i s  equivalent 

to a function in CF and to a function in Cr.  then f is already equivalent to a 

function in EF, i.e. to x ' f o r  some s ~ [p -- x/2.p + x/2]. Indeed, l e t f e  C~ and lets 

be the smallest number in the support of the measure tt which representsf, l f f i s  

not equivalent to x ~ then/~({s)) = 0 and hence lim~_~of(x)/x ~ =0  while E s = {x~}. 

Let g e CF, be such that g* is equivalent t o f .  

Then on the one hand 

(i) l i m g ( y ) / y ' = o %  E o = { y ' } ,  r - l + s  - 1 = 1  
y~O 

~nd on the other hand for some measure v on [q,  t2] (where tx  1 + (p _ x/~)_ 1 = 1 

and t~ t + (p + x/2) -1 = 1) 

f"-y'clv (ii) g(y) = (t). ; O < y < l 

Since (i) and (ii) are mutually contradictory, our assertien is proved. 

EXAMPLE 3. We turn now to the example constructed in the proof of Theorem 3 

of[4], which will play the central role in this section. Let us first recall the definition 

of the two Orlicz functions M(x) and N(x) used inthis example. Let 1 < c < d < oo 

be given, and let t, = 2 -2"-I , n = 1,2, . . . .The functions M(x) and N(x) are 

Orlicz functions (defined on [0,1]) which satisfy 

(i) M(1) = N(1) = 1, M'(1) = N'(1) = c, 

(ii) c <= x M'(x)/m(x) <_ d, c <= x N'(x)/N(x) < d, 0 < x < 1 
.2n-1 

(iii) M(t3,+l)/N(t3,+l) = Z , for some 0 < 2 < 1, n = 1,2,... 

and the following recursion relations (n = 1,2,...) 

(iv) 

M(x) 

N(x) 

M(x) 

N(x) 

= M(t3n+l)N(x/t3"+l)} 2 

N(t3n+l)N(x/t3n+l) t3,+l>__--x>=t3,+2=t3n+l 

= M(t3,+2)M(x/t3,+2)) 
2 

N(t3,+2)N(x/t3,,+2 ) ~t3n+2 >= X >= t3n+3 = t3,+2 
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M(x)  = M(t3n+3lM(x/t3.+3). ~ 
2 

N(ta.+3)M(x/t3.+3)ff3.+ 3 > x > t3.+4 = t3.+3 N(x)  

It  is easily seen that  such M and N exist (cf [4]). We begin by establishing a 

further property of  these functions. 

LEMivin 1. For any integer n set jn = 2  3~"+1). Then for  any non-negative 

integer k at least one of the three functions 

M ( 2 - i x ) / M ( 2 - i ) ,  i = kj., kj. + J.-1, kjn + 4j._~, 

is equal to M(x )  for 1 >_ x >_ t3.+1 and at least one of these functions is equal to 

N(x)  for 1 >_ x > ta.+ l. The same statement is valid for  the functions 
I 

N(2- ix ) /N(2- r  i = kjn , kj. + Jn-1, kj. + 4in_ 1 . 

PROOF. We shall prove simultaneously all the assertions in the lemma by 

induction on k (keeping n fixed). For  k = 0 the assertions follow f rom the fact that  

M(Z~ ~ = M(x),  N(2~ ~ = N(x) ,  

and by the recursion relations (iv) 

M(2 -j" - ' x ) /M(2  - j " - l )  = M(t3.+ix) /M(t3.+O = N(x),  t3.+~ -< x < 1 ,  

and 

N(2-4J"-lx) /N(2 -4j"-1) = N(t3n+3x)/N(t3.+3) = M(x) ,  t3n+x -< x -< 1. 

This proves the lemma for k = 0. To illustrate the inductive step let us prove 

the lemma for k = 1. Notice that  for j .  < i =< 2j. - i n - 1  and for t3n+l _< x < 1 

we have 

t3n+ 4 = 2 - j .  :> 2-ix => 2-2j .+j . - l t3n+ l = 2 - 2 J .  = t3n+4.2 

Thus for such i and x 

M(2-  'x) /M(2 - i )  = M(t3. + 42- rx)/M(t3.  + 42 - ' )  = N ( 2 - '  x ) / N ( 2 - ' )  

where r = i - j . .  A similar equation holds for N(2 - ix ) [N(2 - i ) .  This reduces the 

case k = 1 to the case k = 0. 

Suppose now the assertion of  the lemma is true for k < r and let us prove it 

for  k = r > 1. Choose the integer m so that  2 " - x  < rj. < 2 m, and let s = 2m-X/jn 

which is an integer (a positive power of  2). For  rj. _< i < (r + 1 ) j . - j . _  1 and 

t3.+1 < x < 1 we have that  t,. = 2 -2"-1 _~ 2-~x > 2 -( '+a)j"+j"-I t3n+l _>_ 2 - 2 " =  
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= t~. Hence, by the recursion relations (iv), we get that for these i and x, 

M(2-~x)/M(2 -i) is equal to either (depending on m (mod 3)) 

M(2-i+SJ"x)/M(2-i+sJ") or N(2-i+SJ"x)/N(2-~+sJ"). 

A similar statement holds for N(2-~x)/N(2-~). Thus we are reduced to the case 

k = r - s for which the lemma holds by the induction hypothesis. 

THEOREM 3. There exists a reflexive Orlicz sequence space which has no 

complemented subspace isomorphic to an lp space, 1 < p < ~ .  

PgooF. We claim that  the space lM with M the function considered above has 

the desired property. By Theorem 2 it is enough to show that  for every 1 < p < 

the function x p is strongly non-equivalent to E~t,1. 

Let p > 1 be given, let n be an integer and let K = do12 -z"- '  where do = 2 d 

while d and 2 (0 < 2 < 1) are the constants appearing in (ii) and (iii) above. 

Consider now the 17.2 3" points 2 -k; k = 1,2,.-., 17.2 3, and assume there 

exists s E (0,1) such that  

K-12-kt' <= M(S2 -k)/M(s) < K2-kP; k = 1,2, ..., 17"23". 

Let the integer i satisfy the inequality 2 -(i+1) < s < 2 -~. Using (ii) i.e. the A 2 

condition for M, we get 

d o aM(2- ~2- k)/M(2- i) < M(s2- k)/M(s) < doM(2- i2- k)/M(2- ~). 

It follows that  

(doK)-12 -kp <= M(2-i2-k)/M(2 -i) < doK2-kp; k = 1,2, ..., 17-23". 

These inequalities can be rewritten as follows: 

(doK)-12 -jp < M(2 -~" 2 -j) ]M(2 -i) < (doK)2-~P; j = 1,2, ..., 16.23" 

and 

(doK)-12 -(j+23")p <= M(2 - i .  2-~.  2-23")/M(2 -l) < (doK)2 -tj+23")p 

j = 1,2, . . . ,16" 2 3" . 

Dividing the corresponding inequalities and noticing that 2 -23.= t3,+ ~ we have 

(doK)-2t~,+l < m(2 -q+/) t3,+a)< (doK)2t~,+~; j = 1,2, . . . ,16.23".  

M(2-~+J)) 

Now, by applying Lemma 1 for the functions 
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M(2-(i+g)x)]M(2-(i+~)); ta,+l < x <= 1; j = 1 , 2 , . . . , 1 6 . 2 3 "  = 2j,, we find a pair 

o f  indices rl and r2; 1 __< rl, r2 =< 16.23" such that 

M(2-(i+'X)x)/M(2 -(i+'')) = M(x)  
; t3,+1--<X--<l. 

M(2-  (~ + ~)x)/M(2-(i  +,~)) = N(x)  

This means that 

(doK) -2 ta.+xP =< M(t3.+ l) -< (doK) 2 t3.+n 1, 

(doK)-2 tan+ I n  ~ N(tan+ 1) =< (doK): tP3.+l, 

which implies that (cf (iii)), 

~-2 "-1 N(t3n+l) < (doK)4 (2-2.-4)4 . -2 . -2  
M(t3,+l) = 

and this contradicts the fact that ;t < 1. In conclusion, we have just shown that 

M(x)  and x p; p > 1 satisfy the condition ( + )  of  Section 2 with K = do 12- 2--, and 

m x = 17 �9 23". This means that for any ~ > 0 mK= o(KO as K ~ oo and thus, 

xP; p > 1 is strongly non-equivalent to EM.1. Q.E.D. 

If  we look at the Orlicz sequence spaces from the point of  view of  the isomorphic 

theory of  Banach spaces, it is quite natural to identify two Orlicz functions G and 

H provided EG,1 = Eu, 2. The reason behind this statement is that if condition A z 

holds for G and H then Eo,1 = EH,1 implies that lG is isomorphic to a comple- 

mented subspace of  l u and vice-versa In is isomorphic to a complemented subspace 

of  l~; therefore, by using Pelczynski's decomposition method [6] (which is also 

described in the last lines of the p roof  of  [4] Theorem 3) it follows that l~ and In are 

isomorphic. 

With this identification in mind we can introduce a partial order in the class of  

all Orlicz functions as follows: G--~Ha*,G~Eu,1. 

This leads us to the following definition. 

DEFINITION 2. An Orlicz function G is called minimal i f  Ea, 1 = Eu, 1 for  every 

HEEG1.  

A standard application of  Zorn 's  Lemma to the set  of  Orlicz functions in 

Er, a endowed with the previously introduced order proves that: 

For every Orlicz function F on [0,1] satisfying the A z condition there exists 

at least one minimal Orlicz function G in EF 2. 
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Minimal Orlicz sequence spaces have the following interesting property. 

THEOREM 4. Let G be a minimal Orlicz function, and let {ei} be the unit 

vector basis of l G. Then every block basis (uk} with respect to (ei} which has the 

form u k = ak ~,~e, (where (ak} are mutually disjoint finite subsets of the 

integers and ak ~ O, scalars) spans a subspace isomorphic to la itself. 

PROOF. Let U -- span {Uk}. We assume as we may, that  II Uk II = 1 for every k. 

For  y - -  ~,,A,e~l G we shall denote ~,G(]),,I) by 7(Y). There is a contractive 

projection P from l G onto U defined by 

Py = ~ ( ~.~., )Uk/~knk if y --- ~,~2,ei, 
k = l  \ i E ~ k  / 

where n k denotes the number of  elements in Gk. By the convexity of  G 

k = l  l e a k  k = l  ietrk 

Let Gk(t ) = ~(tUk) = nkG(]~klt), 0 --< t --< 1. Then G k eEG, 1 and there is a subse- 

quence {kj) of  the integers such that ]Gkj(t)-H(t)l < 2 -i,  0 <_ t <- 1, for some 

HeEG,1. The subspace Uo=span(uk~} is isomorphic to lu and there is a 

projection from U onto Uo. Since G is minimal, G eE~,l  and thus l~ has a com- 

plemented subspace isomorphic to IG.We shall use these facts and a slight variant of  

Pelczynski's decomposition method [6] to show that la ~ U ( ~  denotes iso- 

morphism). 

For  a subspace W of la we define (W G W 0 ) ' " ) ~  as the space of  all sequences 

Y = (Yl, Y2, "") such that each vector y, e W and F ( y ) =  ~ :~  1 ~(Y,)< ~ .  The 

norm is defined as usual II y II = ( inf  t > 0, r(y/t) < 1}. Observe that in general 

(W @ W O"' )G does not coincide with the space of  all the y = (Yl, Y2, '") such 

that (lYl [I, II y2 II,...) ~IG �9 

Consider the subspace U of la, the projection P onto U and let W = kernel P. 

Since G satisfies condition A 2 (with constant  K say) we have for every choice 

of scalars ),~ and p~ that 

z, Z, G(2max([~.,I, [p,i))_-<K ( Z. a(l ,l) + ,z 
and  hence 7(Y - PY) < 2Kv(Y) for every y e l G. It follows that 

I~'Z(IG@ IG@'")~ ~ ( ( U  @ W)@(U @ W)@...)G 

'Z U @((W @ U)@(W ~3 U) O ' " ) v  z U @ l G. 
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Since we have also that  U ~ l~ ~ X for some Banach space X we deduce that 

U ..~ l+ @ U ~ IG as desired. 

REMARK. M. Zippin [8] has shown that if {e+} is a basis of  a Banach space 

such that for every normalized block basic sequence {Uk} of the form appearing 

in the statement of  the theorem, {e+} is equivalent to {us} then {e;} is already 

equivalent to the unit vector basis of  Co or l+ for some 1 < p < oo. There are 

minimal Orlicz functions G which are not equivalent to any function xP(see below). 

For  such functions G, the isomorphism from l+ onto U is not in general induced 

by mapping the {e+} to the vectors {ui). 

Let M be the Orlicz function of  Example 3 above. Since by Theorem 3, EM,1 

does not contain a function equivalent to any x p, it follows by the remark preceed- 

ing Theorem 4 that EM, t contains a minimal function G which is not equivalent 

to any x p. It is perhaps worthwhile to note that M itself is equivalent to a minimal 

Orlicz function as is shown in the following Proposition. 

PROPOSITION 1. For any G ~ EM, 1 there exists an Orlicz function M t equivalent 

to M such that M1 sE~,I. 

PROOF. Let s,; 0 < s , <  1; n = 1,2,... be such that  

[M(s,x)/mCs,) - GCx)[ < GCt3n+6)/2, n -- 1,2, ..-; 0 -< x < 1. 

Choose integers i, such that  2 -(i"+1) < s, < 2-i"; n = 1,2, ... Then 

dolM(2-1"x) /M(2 -i") < M(s,x) /M(sn) < doM(2-~"x) /M(2-i"); n = 1,2, ..- ; 

which implies 

do~(G(x) G(t32+6). ) ~ M(2-'"x) 

M(2 -+-) 

O < x < l  

<d o (G(x) + 
G(t3n+6) ) 

2 " ; n = 1 , 2 , ' " ;  

O < x < l  

and thus 

(dol[2)G(x) < M(2-t"x)/M(2 -i") < (3do/2)G(x); n = 1,2,.-. ; t3n+6 --< X --< 1. 

2_2 3"+:+ Since 2 -t6 "23" tan+l = 2 -17 23n > = t3n+6 it follows that 

(do '/2)G(2 -i)  < M(2-+-2 -l)  /MC2- ")  < (3do/2)G(2-i); n = 1,2,... ; 

j = 1,2,.. . ,  16.2 3, 

and 
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(do l /2)G(2-Jz)  <= M(2- ' "2 -Jz ) /M(2  -'") < (3do/2)G(2-Jz); n = 1 ,2 , . . . ;  

j = 1,2,, . . ,16 �9 2aN; t3n+l < Z < 1. 

Dividing the corresponding inequalities we obtain 

(do2/3) G(2-iz) < M(2-(~"+i)z) 

6(2-J) M(2-~,*~) ) 
< 3dozG(2-jz) 3 = _ ; n = 1 ,2 , . . . ; j=1 ,2 , . . .  ; 16.2 "; 

G(2 -~) 

t3n + I <- Z ~ 1 

By Lemma 1 there exists an integer r,; 1 _<-_ r, < 2j~ such that 

M(2-t~"+r")z)/M(2 -~i"+~")) = M(z); n = 1,2, . . . ;  t3,+1 < z < 1. 

Hence 

dO 2/3)~(2-" z)/G(2-") 5 M(z)  <= 3 d ~ ( 2 - ' o z ) / C ( 2 - " ) ;  n = 1,2, ...; r3,§ ~ <- z <_ 1. 

Since G(2-'~ - " )  contains a subsequence converging uniformly on [0,1] 

to a function M~ ~EG.1 it follows that 

(doZ/3)M~(x) < M(x)  < 3d~Ml(X); 0 < x <- 1 

which means that  M1 is equivalent to M. Q.E.D, 

Our next proposition shows that the collection of  sets EF with lr reflexive is 

closed under unions (up to equivalence). 

PROPOSITION 2. Let F and G be Orlicz functions such that Ir and l~ are reflex- 

ive. Then there exists an Orlicz function H such that l n is reflexive and with EH 

equal up to equivalence to Er. 1 U E~, 1. There exists also an Orlicz function 

I7 with l~ reflexive and Eft equal, up to equivalence to E e • E~. 

PROOF. We assume that  F and G are defined on [0,1] and normalized so that 

F ( 1 ) = G ( 1 ) =  1. Since le and I~ are reflexive there is a c >  1 such that 

xF' (x) /F(x)  > c and x G ' ( x ) / G ( x ) >  c for every x ~[0, 1]. There is no loss of 

generality to assume that F'(1) = G'(1) = c. Indeed, we have simply to replace F 

by the equivalent function F~(x) = max(F(x), c(x - I) + I), 0 _< x _< I (and 

similarly for G). 
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Let t" 9 - 2 " -  1" = _ , n = 1,2,.-. and define H(x)  by 

Israel J. Math.,  

I - I ( x )  = 

"F(x) tl = �89 < x <_ 1 

H(t2n_a)G(x /t2n_l) t2n < x ~ t2n_ l 

H(t2.)F(x/t2.  ) t2n+l ~ X <= t2n 

0 X = 0  

By Lemma 2 of  [4] H is an Orlicz function on [0,1] with Irt reflexive. Since 

H(t2._lx)/H(t2._~) = G(x) for t2. 1 < x -< 1 it follows that  G belongs to En and 

thus EG,1 c EH. Similarly Er,1 cert .  

Let now h ( x ) =  lim,. H(XSm)/H(sm)eEn. Choose n,. so that  t...+ 1 <Sm < t. m 

and let Um =Sm/t.~+~. By passing to a subsequence we may assume that  

u = lira,. Um exists (finite or infinite) and that  e.g. all the nm are even. I f  u < oo 

then the A 2 condition for H implies that  h(x) is equivalent to 

limmH(xt.,.+~)/H(t.,~+l) = G(x). I f u  = oo then 

H(xs,.)/H(Sm) = F(xs,.t22)/V(s,.tL1); u~, 1 < x <- 1 

and hence h e Ev,1. ( I f  the nm are odd then either h is equivalent to F or h sEG,I.) 

To prove the second par t  we just write down the definition o f / I  and leave the 

details to the reader 

f/?(t2n)F~(x/t2. ); t2.+ a ~ x < t2n 
IT(x) = n = 0,1 ,2 , - . .  

"1 
LI~(t2.+l)a.(x/t2,,+l); t2.+2 <= x <_ t2.+~ 

where /7(1) = / ? ( t o )  = I and F,(x) is an Orlicz function on [0, 1] satisfying 
t 

F,(I )  = 1, F'(1) = c < xF,(x)/F(x),  0 < x < 1, and g -1 < F,(x)F(2-")/F(2-"x) 

< K for some K independent of  x and n (G,(x) satisfies the same requirements 

only with F replaced by G). 

COROLLARY. Let Ir and I o be reflexive Orlicz sequence spaces. Then there 

exists a reflexive Orlicz sequence space which contains a complemented subspace 

isomorphic to IF @ lo. 

PROOF. Let H be the function constructed in the previous proposition. Then Ir 

and Io are both  isomorphic to complemented subspaces of  lu, and the result 

follows f rom the fact that  IB (~ lH ,~ IH. 



Vol. 11, 1972 ORLICZ SEQUENCE SPACES 373 

REM~d~g:. We did not  check whether Proposition 2 and its Corollary hold 

without the reflexivity assumption. 

EXAMPLE 4. Let 1 < p < r < oo and consider the function H(x) obtained by 

applying Proposition 2 to F(x)=x p and Go(x)=x'. Here we can take p as the c 

appearing in the p roof  of  Proposit ion 2. In order to use the definition of  H given 

there we have to replace Go(x) by G(x) = max(x ' ,  p(x - 1) + 1), 0 _< x -< 1. Up 

to equivalence, EH consists only of  two functions, x p and x'.  The closed convex 

hull Cn of  EH contains functions equivalent to x s for every s e [p, r]. Indeed, for 

1 =< u < oo define hu(x) = lira, H(ut2,_ lx)/H(utz,_ 1) E EH. Then 

xv u - l  < x < l i xp u - l  < x <- I 

h,,(x)= = u-V(p(ux - 1 )  + l) Xo u - l  < x <_ u-1 

~u-VG(ux) O < x < u  -1 Lu,-px, O < x < x o u  -~ 

where Xo is defined by x ~ = p ( X o - 1 ) + l ,  0 < x o < l .  For  l < ~ < r - p + l  

consider 

I ~ h (  ) L (  ) -~ x = ,, x u du 

[,xo/x C 1Ix C o~ 

= I + I u - . - ' (p (ux-  1) + 1)au + I x"u-'au. 
,,11 dxo/x d l lx  

Then f~(x)/f~(1)~ C u and f , ( x )=  K=x p+'-1 + o(x v+'-l) as x-~  0, for a suitable 

positive constant K~, so that f , (x)  is equivalent to x v+'-l. A similar computation 

shows that  for  r ' - < s ' _ < p '  (where 1 / r ' + l / r = 1  and 1 / p ' + l / p = l )  

x ~" is equivalent to a function in Cn, where H* is the complementary function to 

H. Thus we have that s ~ [p,r]-*>l~ is isomorphic to a subspace of  lu~ l~  is 

isomorphic to a quotient space of  ln. On the other  hand ls is isomorphic to a 

complemented subspace of  lu iff s = p or s = r. In order  to prove this assertion 

it is enough (by Theorem 2) to show that for p < s < r, the function x s is strongly 

non-equivalent to Era1. 

Let n be an integer and let K = 2 -~'2"-* where ~ = m i n ( r -  s, s -  p ) >  0. 

A simple verification shows that for every i > 2 "+ 1 there is a j _-< 2 "+ 1 such that the 

number H(2-z2-J)/H(2-~) �9 2 -is is outside the interval [K -1, K] .  Put x i = 2-J;  

j = 1,.-.,2 "+1 and for 2 "+1 < j  < 2 "+2 choose xj so that  
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�9 n ' l ' l  n + l  

n ( 2  -~+2 x j ) / n ( 2  -j+2 )x~ 

is outside [K -1, K]. Then for every 0 < t < 1 there is a 1 < j  < 2 n+2 such that 

H(txj)/H(t)x~. is outside [K-12d, K2 -d] where d is the A 2 constant of  H (actually 

d = r). This proves that x s is strongly non-equivalent to EH,1. 

Proposition 2 can be generalized to the case where instead of  the union of  two 

sets of  the form EF we consider suitable infinite unions. We shall state here only 

one such generalization which shows that the class of  Orlicz functions, with the 

order defined above, has also relative maximal elements. 

PROPOSITION 3. Let 1 < c < d <  oo. Then there is an Orlicz function 

n ( x )  = Hc, d(X ) such that c < x n ' ( x ) / H ( x )  < d for 0 < x < 1, and for every 

Orlicz function F with c < x F'(x) /F (x) < d; 0 < x < 1, there is a function equi- 

valent to F in EH. 

To prove the proposition we need first the following lemma. 

LEMMA 2. Let g(x) be an Orlicz function on [0,1] such that c < xg ' (x) /g(x)  

< d; 0 < x < 1, and c > 1. Then there exists an Orlicz function G(x) on [0, 13 

such that 

1) G is equivalent to # 

2) G(1) = 1; G'(1) = c 

3) c < xG'(x) /G(x)  < d; 0 < x < 1. 

PROOF. We may clearly assume that g(1) = 1 and thus x ~ < g(x) < x d for all 

x e [0,1]. For  0 < xl < 1 we define Xz by the equation 

c(g ' (x l ) (x  2 - xl)  -Jr g(xl)  ) = g' (x l )x  2. 

It is easily checked that xl  < x2 < xl c ( d -  1 ) / d ( c -  1); hence if we choose 

x~ small enough we get that x 2 < 1. Define now g(x) by 

t 
'g(x) 0 _< x _< xl  

~(x )  = g(x~)  + g ' ( x l ) ( x  - x~) ; x~ < x <-_ x~ 

L [g(x~) + g ' ( x ~ ) ( x ~  - x , ) ] ( x / x 2 )  ~ x2 < x <= 1. 

Then the function G(x) = ~(x)/~(1) has all the desired properties. 

PROOF OF TrIE PROPOSmON. Let {F,(x)}~= ~ be a dense sequence in the subset of  

C(0,1) consisting of  all Orlicz functions G which satisfy G(1) = 1, G'(1) = c and 

c < xG'(x) /G(x)  < d; 0 < x < 1. Let t n = 2-5"- ' ;  n = 1,2, ... and define 
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F:(x)  t l ~  x <_ 1 

H(x) = .~H(t .)F.(x/ t . )  ; t.+l < x < t.; n = 1,2,... 

Lo x = O  

375 

Then, in view of Lemma 2, H has all the desired properties. 

In terms of Orlicz sequence spaces, Proposition 3 shows the existence of universal 

elements, 

COROLLARY. For every 1 < c < d < oo there is an Orlicz function H(x)  with 

c < x n ' ( x ) ] n ( x )  < d; 0 < x < 1, such that for any Orlicz function F(x)  with 

c < xF ' (x ) /F(x)  < d; 0 < x < 1, Iv is isomorphic to a complemented subspace 

of lu. 

REMARKS, (1). It is clear that lH is determined uniquely, up to isomorphism, 

by c and d. On the other hand H is not determined uniquely up to equivalence. 

Hence lH does not have up to equivalence a unique symmetric basis. 

(2) If c-1 + d - 1 =  1, the space In obtained in the Corollary gives a non- 

trivial example of  a space with a symmetric basis which is isomorphic to its 

conjugate. 

4. Problems and comments 

The results and examples obtained in [4] and in the previous sections lead 

naturally to some specific open problems as well as to some general directions in 

which further research seems to be desirable.This section is devoted to a discussion 

of such problems and research directions. 

The most obvious question left open by our discussion is 

PROBLEM 1. Assume I s is isomorphic to a complemented subspace of IF. Is f 

equivalent to a function in Ep, I? 

A positive answer to Problem 1 would show that If is isomorphic to lG iff 

EG,1 = Ee,1, up to equivalence and thus that IF has up to equivalence a unique 

symmetric basis iff every G for which Eo,1 = Er,~ (up to equivalence) is already 

equivalent to F. 

A Banach space X is called prime if every infinite dimensional complemented 

subspace of X is isomorphic to X. At present the only known prime spaces are Co 

and Ip; 1 < p < oo. The results and examples of Section 3 suggest that among the 

separable Orlicz sequence spaces there are new examples of prime spaces. 
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PROBLEM 2. Assume that F is a minimal Orlicz function. Is I r a prime Banach 

space? 

Problems 1 and 2 are special cases of the general question "what can be said 

about the structure of complemented subspaces of an Orlicz sequence space" 

Another aspect of  this question which will probably play a role in the solution of 

Problem 2 is 

PROBLEM 3. Let X be a complemented subspace of a separable Orlicz sequence 

space It. Does X have an unconditional basis ? 

Let us remark that in general such an X need not have a symmetric basis (e.g. X 

canbe/v @/ ,wi thp  r r). 

In [4] we showed that for every Orlicz function F the set Cr contains x p for 

some p > 1. The set of numbers p such that  x p e Cr deserves further study. Let us 

note that if I s = Ip then Theorem 1 can be formulated in a simpler manner. The 

space Ip is isomorphic to a subspace of  Iv iff x p e CF. Indeed, assume that  9 is 

equivalent to x p and 9 ~ Ce,1. Then C o c Cr and by the result of [4] mentioned 

above x q ~ Cg for some q. Clearly this q must be equal to p and hence x p ~ Cr. 

Let us also note that the proof  of Theorem 1 of [4] shows that i f f ~  Ce, then the 

following slightly stronger assertion than that of Theorem 1 here holds: For  

every e > 0 there is a linear operator T~: Ij- ~ le such that (1 - ~) tl x II < [I T,x [I 
< (1 + e)1[ x [1, x e Ij,. (If such a situation holds it is said t ha t / s i s  almost isometric 

to a subspace of It). That this is the case is seen by taking the u, appearing in the 

proof  of Theorem 1 of [4], to be sufficiently close to 1. The preceeding two 

observations show that if for some p and F, Ip is isomorphic to a subspace of 1 e 

then Ip is almost isometric to a subspace of lF. 

We mention two specific problems (probably much easier than the preceeding 

ones) concerning the set of  p's such that  x p e CF.* 

PROBLEM 4. Let F be a reflexive Orlicz sequence space. Does there always 

exist a p such that  Ip is isomorphic to a subspace as well as to a quotient space of 

le ? (i.e. xPeCr and x~EC~, where q-1 + p - l =  1). 

PROBLE~ 5. IS the set of numbers p such that x p e Cv always an interval ? 

Orlicz sequence spaces form a special subclass of the larger class of  all Banach 

spaces with a symmetric basis. The statement of several of the results which we 

obtained for Orlicz sequence spaces make sense for this larger class. It is natural to 

* See the note added in proof. 
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ask whether the results are still valid in the more general setting. Let us mention 

for example 

PROBLEM 6. Does every Banach space X with a symmetric basis have a subspace 

isomorphic to Co or Ip for some 1 < p < oo ? 

This question has been asked in several places for arbitrary Banach spaces. It 

seems very likely that  for spaces with symmetric bases it will be easier to settle 

this problem. 

There is a class of symmetric spaces that  are not in general Orlicz spaces, which 

have received some attention in the literature (el [1] and its references). Let p > 1 

and let w = {w.} be a decreasing sequence of positive numbers such that  •.w. = oo 

and lim.w. = 0. We denote by p(w,p) the space of all sequences {x.} = x  such that 

Ilx IJ"= sup Z ,  l x,,,,Iv w, < oo where the sup is taken over all permutations zc 

(the sup is clearly attained by any permutation rc for which Ix=(,)] >_- [x,(,+a)[; 

n = 1,2,...). The space #(w,p) is reflexive if p > 1. It is easy to verify that  for 

X = I~(w,p) the answer to Problem 6 is positive in the following stronger form 

PROPOSITION 4. For every p >__ 1 and every w = {w,} the space #(w,p) has a 
complemented subspace isomorphic to I v. 

PROOF. Choose a sequence of  integers 0 = r 1 < r 2 ... such that  r,+~ > 2r, + 1 

and 

r n  + l - -  r n r n  

Y~ wi_-> ~ w~ ; n = 1 , 2 , . . .  
i = r . + l  i = 1  

This is possible since ]~.w. = + oo. Let ei; i = 1,2,... denote the unit vectors 

of p(w,p) and set 

/ (..,s 
u . =  ~ e~ ; n = l , 2 , . . -  

i = r . + l  i 

Obviously, the vectors u.; n = 1,2,... form a normalized block basis of {ei} with 

constant coefficients. 

Let 2.; n = 1,2,-.. k be a finite sequence and let g be a permutation of the 

integers {1,2,...,k} such that  

r n ( n }  + 1 - - r ~ ( n )  

1 2.t.)l"/ ]~ w,; n = 1,2,-. . ,k 
i = I  

forms a non-increasing sequence. Then 
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n 1 n =  / = 1  i = 1  

n - 1  where i, = ~j  = 1 (r~(j)+l-r~(sj). Since wn is a nonincreasing sequence it follows 

immediately that 

s ) n Z=, ,I:,,. =< (:=, I,t.l, ",. 
On the other  hand 

since , -  1 l~j = 1 (rj§ ~ - rj) = r,. In view of  our choice of  r, we have 

i~ = r n * l - r n  

~, wi+,, wi> E wi wi+ ]~ wi >�89 n=l ,2 , . . . , k ,  
1=1  i i :r .+l  \ i = 1  i=rn+l / 

which implies 
k 

This shows that  the closed subspace of  lz(w,p) spanned by the vectors u,; 

n = 1,2,-.. is isomorphic to lp. This subspace is complemented in view of  I-5] 

Lemma 4 and therefore the p roof  is completed. 

It is perhaps of  interest to comment on the relation between the spaces #(w,p) 
and the class of  Orlicz sequence spaces. Since the only symmetric bases in an 

Orlicz sequence space are those which are induced by Orlicz functions, it follows 

that #(w,p) is isomorphic to an Orlicz sequence space iffthere is an Orlicz function 

F (satisfying, of  course, the A 2 condition) such that for decreasing sequences of  

positive numbers {2,}~= l ,  Z.2,VWn < ~ iff ~nF(2.) < oo. Sometimes, there exists 

such a function F. For  example if p > 1 and w,=( log  n) -1 then as is easily 

checked F(x) = xP/llog x] has the desired property.  On the other  hand if w, = n -  a 

or more generally if e.g. lim inf,_.~o Sk,/S, = 1 for every k where S, = ~i"---a wi, 
then such an F does not exist. Indeed it follows easily that if a function F exists 

then the sequence mF(S~,I/9) m = 1,2,..- is bounded and bounded away from 0. 

Using the A z condition for F, it is easy to deduce that  for sufficiently large k 

l i m i n f . - ~ o o  Skn/Sn is greater than 1. 

It is clear that for no sequence w = {w,} (with w, ~ 0 as we always assume) is 

the function F(x)= x p a suitable function. Hence tt(w,p) is never isomorphic 

to Ip. 
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Note  added in proof. 

The answer to problems 4 and 5 is affirmative. Let F(t) be an Orlicz function 

satisfying the A 2 condition and set 

~r = sup{p; sup F( tx ) /F( t )xP< oo} 
0 < x , t< 1 

flF = inf{p;{p; inf F( t x ) / f ( t ) x  p > 0}. 
O < x . t ~ l  

Then the following holds: 

THEOREM The  space lp is isomorphic to a subspace o f  IF i f f  p~[ctF, flF]. 

The interval [ ~ ,  fir] coincides with the interval associated to an Orlicz space 

l F in several places in the literature (e.g. in [3]). The following corollary gives a 

strong answer to Problem 5. 

COROLLARY. Let  l F be a reflexive Orlicz sequence space. The  space lp is iso- 

morphic to a subspace o f  1F i f f  it is isomorphic to a quotient  space o f  IF. 

It  can be shown that  the interval associated to the space of  Example  3 (in 

Section 3 above) is a single point. 

Details will be published elsewhere. 
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