ON ORLICZ SEQUENCE SPACES. II

BY

J. LINDENSTRAUSS AND L. TZAFRIRI

ABSTRACT

Given a separable Orlicz sequence space / we investigate those Orlicz sequence
spaces [ which are isomorphic to subspaces (respectively complemented sub-
spaces) of /p. We give in particular an example of a reflexive Orlicz sequence
space which does not contain any /,,1< p < 00, as a complemented subspace.

1. Introduction

The present paper is a continuation of [4]. Its main purpose is to investigate
the structure of those subspaces of an Orlicz sequence space which are themselves
Orlicz sequence spaces. We assume that the reader is familiar with [4] and in
particular with the basic notions related to Orlicz sequence spaces which were
reviewed in Section 2 of [4]. Unless stated otherwise we assume that the Orlicz
functions considered here satisfy the A, condition (at 0).

The first result to be proved here (Theorem 1, Section 2), gives a necessary and
sufficient condition on f for I, to be isomorphic to a subspace of a given Orlicz
space Iz. The condition is that f should be equivalent to a function of the compact
convex set Cy,, in C(0,1) (recall that Cy,, = conv {F(sx)/F(s)}).

O<sst

While the solution to this problem is relatively simple, it seems to be more
difficult to find a characterization of those f such that I is isomorphic to a com-
plemented subspace of ;. From the existence of the so called ‘‘averaging pro-
jections’’ (or conditional expectations) it follows immediately that if fis equivalent
to a function of Ep,; = {mqg 1»then [, isisomorphic to a complemented
subspace of I. Is the converse true? We do not know the answer. The main result
of Section 2 is a partial answer to this question. We show that if f is “‘strongly
non-equivalent”” to Ep,; then I, is indeed not isomorphic to a complemented
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subspace of I.. The requirement that f be strongly non-equivalent to Ej,; is a
quantitative uniformity condition which is stronger then the requirement that f
is not equivalent to any function of E,;.

Section 3 is devoted mainly to the study of some examples. The first two
examples we consider are Orlicz spaces Iz in which F is given by an explicit
formula.These examples, besides illustrating results of Section2 and [4], show also
the role of duality arguments in the questions we consider in this paper. The next
example considered in Section 3 is the Orlicz space constructed in [4], in the
proof of Theorem 3 there. We show, by using the main result of Section 2, that
this space does not have any /,-space as a complemented subspace. To the best
of our knowledge this is the first known example of a Banach space which contains
no complemented subspace isomorphic to ¢, or to some [, 1 £ p < oo. Though
this space I, is constructed in a somewhat ““artificial’’ manner it is nevertheless a
“‘nice”” Banach space from many points of view. It has a symmetric basis and is
reflexive (actually even uniformly convexifiable).

The rest of Section 3 is devoted mainly to the investigation of some classes of
Orlicz sequence spaces. These are the ‘“minimal’” Orlicz spaces, some spaces
obtained by a composition operation from other Orlicz sequence spaces and
universal Orlicz sequence spaces. All these examples and classes illustrate the
very rich structure of Orlicz sequence spaces. We are convinced that Orlicz
sequence spaces will play in the future an important role as test spaces for various
questions in the isomorphic theory of Banach spaces. The structure of Orlicz
function spaces is naturally more involved (and interesting) than that of sequence
spaces. We plan to treat the structure of subspaces of Orlicz function spaces and
the connection between Orlicz function and sequence spaces in a future paper.

The last section of this paper is devoted to a discussion of some questions,
concerning Orlicz sequence spaces and more general spaces with symmetric
bases, which arise naturaily from the results of Sections 2 and 3.

2. General results
We begin by proving a theorem which characterizes the functions f such that
1, is isomorphic to a subspace of a given Orlicz sequence space Iy.

THEOREM 1. Let F be an Orlicz function satisfying the A, condition. An
Orlicz sequence space 1, is isomorphic to a subspace of lp if and only if f is

equivalent to some function in Cr,; = conv{F(sx)/F(s)}.
0<sg1
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ProOF. The necessity has been proved by Lindberg [3]. Let us briefly recall
the proof. Let T be an isomorphism from [, into I and let {u;} and {¢;} denote
the unit vector bases of these spaces. By a standard procedure one can choose a
subsequence {u; } of {u;} and a sequence of unit vectors {v,} in I such that
0w = Tus, | | Tu;, ||| £27", and v, = EP2%! | de; for suitable {A;} and a suitable
increasing sequence {p,} of integers.* Letg,(x)=X"2%! | F(Ax),n =1,2,--,0 £ x
= 1. Since 1 = ” v, | = ZfzttL F(4), it follows that g, € Cy,, for every n. Let g
be a limit point of {g,} in the compact set Cg,;. It is easy to verify that a series

X2, au; converges iff X2 g(|o;|) < oo, i.e. that g is equivalent to .

We prove now the converse. Assume that fe Cp ;. Since the extreme points of
Cy, ; are contained in the compact set Ep,; we get, by the Krein-Milman theorem,
that

16) = [ goniu@ 0sxst
i1

for some probability measure p on Ep . Set

Ep. = {F(sX)[F($)}o<ss» 0<t<1;Ep = () Ep,

>0

and let f= u(Eg). Then f(x) = Bg(x) + (1 — B)h(x) where g € Cy = conv Ey and
h(x) = LIF(sx) [E(s)dv(s)

for some probability measure v on [0, 1] with v({0}) = 0. (If B = 0, respectively 1,
then g respectively h do not appear.) The argument used in the proof of Theorem 1
of [4] shows that there exists a normalized block basis {v;} of the unit vector basis
{e;} of I such that a series £ ,a;v; converges iff X;2,g(|o;|) < 0.

Since F satisfies the A, condition it follows immediately that h(x) is equivalent

to the Orlicz function hy(x) defined by
ho(x) = X wFQ*x)/F27%);  v,=v[27® "D 27%],
k=0

Put A, = v, [F(27%), k = 1,2,---, and let k, be the smallest index such that 4, # 0.
Let o be the set of all integers k for which 1, < ;. Then

Y AFQ)Shy(x) € T ALFQTN) + Ay, SRR k) <

keo keo k=kot+1

< X 4FQ7) + 4, FQ7Mx) T 27<2 T AFQ7H).

kea j=t keos

* We assume, as we may without loss of generality, that 4, = 0 for all 7.
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(Recall that, by convexity, F(ay) < aF(y) whenever 0 £ «, y < 1.) Since the A, for
keo are bounded from below by the positive number 4, it follows (by multi-
plying by 2, 'and replacing each coefficient 4, A, by the integer [4, /4,,]) that
ho(x) is equivalent to a function h,(x) = %o nF(2~*x) with {n,} all integers.

Let now {A;}7_, be disjoint infinite sets of integers and let {4;,},Z, be a
disjoint partition of A; so that 4;, has exactly n, elements (j,k =1,2,---,). Put
w; = % 27F X e j=1,2,0,

k=0 icdju
where, as before, {e;} denotes the unit vector basis in I;. Notice that the series
defining w; converges in Ip since X2 omF(27*) = h(1) < co. Moreover, the
same argumsnt shows that a series X% ; o;w; converges iff E}"=1h1(|aj|) < o,
ie iff T2 h(|o;]) < 0.

Returning to the vectors v; defined in the beginning of the proof in connection
with the function g we may clearly assume that the support of v; (i.e. the set of i
such that e; appears in the representation of v; in terms of the unit vector basis)
is disjoint from the support of w, for all j and m. If we assume this, then
X2 4;(v; +w;) converges in Ip iff T2 ap; and X% a;w; both converge,
thatisiff X%, g(|o;|) < o and T2 h(|a;]) < co. In other words X%, a(v;+w))
converges iff 22 1f(|cx»,|) < oo and thus the closed linear span of {v; + w;};2,
is isomorphic to /. Q.E.D-

The dual version of Theorem 1 gives a characterization of the Orlicz sequence
spaces [, which are isomorphic to quotient spaces of . Before stating this refor-
mulation of Theorem 1, let us recall some known facts concerning duality in
Orlicz sequence spaces (a general reference for these facts is [2] or [3]). If [z isa
separable Orlicz sequence space (i.e. if F satisfies A,) then the dual space Ipis
isomorphic to another Orlicz sequence space which we denote by /z.. Here F*
is defined by F*(s) =sup{ts — F(f),0 <t < o0 } and is called the complementary
Orlicz function to F. (The definition of F* requires F to be defined for all 1 > 0.
If F is defined only in a neighborhood of 0 we extend it to an Orlicz function F,
defined for all ¢ > 0. The special choice of F,; does not change the equivalence
class of F*.) The Orlicz function F* satisfles the A, condition (at 0) iff I; is
reflexive and this is the case iff liminf,_,oxF’(x)/F(x) > 1 (in addition to the
standing assumption that F itself satisfies A,).

COROLLARY. Let I be a reflexive Orlicz sequence space. Then I is isomorphic
to a quotient space of Iy if and only if f* is equivalent to a function in Cg. ;.
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This is an immediate consequence of Theorem 1. Let us remark that if I, is
not reflexive (but separable)then I contains a complemented subspaceisomorphic
to [, (this follows from a generalresult of R. C. James on spaces with unconditional
bases, cf. also [3]). Hence, in this case any separable Banach space is isomorphic
to a quotient space of Ig.

It follows immediately from the definition of F* that for a,b > 0 [aF(bf)]*(s)
= aF*(s/ab), and thus [F(xt)/F(x)J*(s)= F*(sF(x)[x)[F(x), O0<x,s. It is
easily checked that if I is reflexive then F(x)/x — 0 as x — 0 while F*(F(x)/x)/F(x)
remains bounded and bounded away from 0. Hence, if I; is reflexive then f is
equivalent to a function in Eg, iff f* is equivalent to a function in E. ;. In
other words, (putting, for a set of functions 4, 4* = {f*; fe A}) we get that, up
to equivalence, Eg. ; is equal to E7, and similarly Eg, is equal to Egf On the
other hand, examples 1 and 2 of Section 3 show that in general C. , respectively
Cy. are different from Cg respectively C/% This observation has a bearing cn the
question of complemented subspaces of I to which we turn next.

From Theorem 1 and its Corollary we deduce that if I is reflexive, a necessary
condition on f for I, to be isomorphic to a complemented subspace of I is

(*) fis equivalent to a function in Cp,y and also to a function in Cy. ;.

It is also easy to give a sufficient condition on f for I, to be isomorphic to a
complemented subspace of /5. It is well known (cf. e.g. [5}) that if a Banach space
X has a symmstric basis {¢;} then for every block basis {u,} of the form
u, = o, 2intl e, thereis a projection (called averaging projection or conditional
expectation) from X onto the closed linear span of the {u,}. In an Orlicz sequence
space I with unit vectors {e;}, normalized blocks {u,} as above correspond (via
the general correspondence between blocks and functions in Cg; which has been
used in the proof of Theorem 1) to functions in Er ;. Hence (as observed already
in [3]) I, is isomorphic to a complemented subspace of I if the following holds

(}¥) f is equivalent to a function in Ep .

It follows from the discussion above that for reflexive spaces I (*¥)=(*). This
implication follows also trivially directly since Cf.; o Ef., and the latter set,
is up to equivalence equal to E ;.

In some cases (cf. example 1 in Section 3 below) it happens that (*) is equivalent
to (3). In such cases each of (*) and (.) give a necessary and sufficient condition
on f for I; to be isomorphic to a complemented subspace of Iz. In general
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(%) is strictly stronger than (*). In Section 3 we present an example (example 4)
in which (*) is not sufficient to ensure that [, is isomorphic to a complemented
subspace of I;. In general it is also quite difficult to check for which f condition (*)
is satisfied.We turn, therefore, our attention to condition (3) which is often much
simpler to check. We do not know whether () is also a necessary condition.
The main result of this section shows that a somewhat weaker version of (3)
is already necessary. Let us first write down the negation of (3) explicitly. Since
Ef,; is a compact set it follows that f is not equivalent to any function in Ep ; iff

(+) For every K 21 there exist my points x;€(0,1); i =1,2,---,mg, such
that for every s€(0,1) there is at least one index i, 1 £ i < myg, for which either
F(sx;)[F(s) < K™ 'f(x;) or F(sx;)[F(s) > Kf(xy).

DErFINITION 1. Let F be an Orlicz function satisfying the A, condition. A
Sfunction f on (0,1) is said to be strongly non-equivalent to Eg , if (+) holds
with the additional requirement that the integers myg can be chosen so that
mg = 0o(K") as K - o for every o > 0.

In terms of this notion of strong non-equivalence we can now consider the
variant of (i) which gives a necessary condition for the existence of a projection
from I on a subspace isomorphic to I,.

THEOREM 2. Let F be an Orlicz function satisfying the A, condition and let f
be an Orlicz function strongly non-equivalent to Eg . Then I, is not isomorphic
to a complemented subspace of I.

PROOF. Let {e;} be the unit vector basis of Iz. The same argument as the one
used in the beginning of the proof of Theorem 1 shows that if I, is isomorphic to
a complemented subspace of I then the following holds: there exists a block
Ae;, 4,20,

jeo %

disjoint finite sets of integers) so that if we put g(x)= X;.,, F(4;x) then

,gi(x) — g(x), £2-1i=1,2,--;0 < x £ 1 for some g € Cy,; which is equivalent

basic sequence w;= %, w; “ =1,i=1,2,---, (where o; are mutually

to f, and so that there is a projection P, from I onto X = span {w;},.

Since F satisfies the A, condition there is a p such that xF'(x)/F(x) < p for all
0 < x £ 1. It follows that for every G € Cg,; we have also that xG'(x)/G(x) = p
and thus by integrating from x to ax with 1 <a < 1/x we get that

G(ax)|G(x) £ a?, GeCp,, 1S a < 1/x.

Modifying the values of F for z > 1 by setting F(z) =1/F(z~!); z > 1 we can
easily show that
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G(ax)/G(x) £ a”; GeCp,y;

for any a > 1 and x > 0.
Since f and therefore g is strongly non-equivalent to Eg,;, we can choose a
number K and mg points x,€(0,1); r=1,2,.--,my such that

mg[K!?P S min(271477 | P27 Py )

and having the property that for every s(0,1) there exists at leastone r; 1 < r
< m, for which either F(sx,)/F(s) < K~1g(x,) or F(sx,)/F(s) > Kg(x,).

Denote & =min; c,<m, {g9(x,)} and let i, be an integer for which 2-i<eif
i 2 i,. In the remainder of the proof we will concentrate our attention on the
vectors w;= X ., J e;; i = i, and on the Orlicz functions g;(x) with i > i, for which
[g:(x) - g(x)| <2< 0€x <1,

Let R be a projection of norm 1 from X onto the closed subspace X, generated
by w;; i 2 i,. Obviously, P = RP, is a projection of norm | P| < || P, || from the
whole space [ onto X,.

Now let us split the set o; into 2m disjoint subsets 5% and #{”; r = 1,2, -, my;
i>i,, having the property:

F(Apx)[F(A) < K™ 'g(x,); jed

}r = 1:2,“':mx; i g ig
F(A;x,) | F(;) > Kg(x,); jen

We have that
Kg(x,) X )F(%) =X ‘S F(A;x,) = gi(x,) < g(x,) + & < 2g(x,)

Je'li Jem

which implies X, F(1,) <2/K and thus

jen;

Z X, FOAp)s2mgK; iz
r=1 jen
Notice that if we set hy(x) = X% X F(A;%); i 2 i, then hy(x)/h(1) € Cp,;
i > i, and thus, as we have shown before
n@| P 27| P|Ph(D) £ 2771 | Py [Pk [K; i 2

The inequality satisfied by the ratio mg /K leads to hi(ZH P H) <1;i=1i, which
means that the vectors v; = X%, ¥ @ Aje;; i 2 i, have norms < 1/(2UP ll)

Denote u{” = st Aseys v =1,2,---,my; i 2 i, and let Q; be the projection of
norm 1 from I, onto the closed subspace generated by the vectors e;; j € g;. Then
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mg mg
w,-=Pwi=P( pX ug')+v,-) = X Pu"+ Py,

r=1 r=1
and further
mg
w;= X Q.Pul”+ Q,Pv; i =i,
r=1
This implies that:

3 joru

z[wl-lepelzt-|P| [0zt izt

Hence, for every i 2 i, there exists at least one index r;; 1 < r; £ my, such that

Jopu

|z 1/2mg iz,

Define the scalars ¢ ;i,n> i, by Pu{ = L2, c\"w,. As is well known (cf.
e.g. [7]) the operator D (for diagonal) defined by

00 o )
DX aul = % ac’w,
i=i, i=i,
whenever 27, aul™” converges, is bounded and H D ” =< ” P H

Notice that

4= o

> 1/2my; 124,
which implies that
a q
| £ | sme) E bt samelel | £ i)

for every finite set of scalars o;; i =1, i, + 1,---,4. Choosing g =i, such that
2< X1, g(x,,) £ 3 we obtain that

IA

4

”/\
|| Ma

gi(xr,)

i

which means that | Z_; x,w;| 2 1. Using the previous inequality for «; =x,,
we have

(ri)
|zx,,'

i=i,

> 1/(2m| P|).

In order to get another estimate for | ¢.; x,u{"” | we should notice that

>q: Y F(Ax,)<K™! Z g(x,) ¥ F()=3K!

i=i, Jjes: (") i=i, jesfrd)
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Since the function Z;~;, X;.," F(4;x,x), normalized so that it gets the value

one for x = 1, belongs to Cp,, it follows that

q
‘ 2 xeul™

i=i,

‘ < 31/pK- 1/17,

and thus 1/2m|| P, || < 3'/? K ~*/%, which contradicts the choice of K and m.
Q.E.D.

3. Examples and special classes of Orlicz sequence spaces

We start by examining examples of Orlicz sequence spaces I in which Fis given
by an explicit expression. We consider first the most widely used examples of
Orlicz spaces (besides, of course, the I, spaces).

ExamPLE 1. Let F(x) = xP(—logx)* with 1 <p< oo and a>0. It is easily
checked that this function is an Orlicz function on some interval 0 < x < xo <1
and thus can be extended to an Orlicz function on (0,00). Since for all our
discussion the values of an Orlicz function outside a neighbourhood of 0 are of no
importance, we define it explicitely only in a suitable neighborhced of 0. (This is
called the ““principal part’’ of an Orlicz function.) We have that

. F(xt . log x\*

im 7= () =
and thus Eg consists only of the function x?, while Ey ; consists of two equivalence
classes: x? and functions equivalent to F(x). Also Cg  contains only these two
equivalence classes. Indeed, any function in Cp,; is equivalent to a function in
Cr,, and Cp,, consists exactly of functions of the form f(x) = J5° F(x)/F(t)du(z)
for some probability measure g on [0, x,]. (In this integral F(x-0) /F(0) stands for
x?). For a fixed 0 £ x £ 1, F(xf)/F(f) is an increasing function of ¢. Hence for
such x, F(xox)[F(xo) 2 f(x)Z u[x1,xo]F(x:x)/F(x,) for every x; < x,. Thus,
unless p is concentrated in the origin, f(x) is equivalent to F(x). It follows that
the only Orlicz sequence spaces which are isomorphic to subspaces of I, are I
itself and I,, and both are obviously also isomorphic to complemented subspaces
of Ip. In order to find the Orlicz sequence spaces which are quotient spaces of I,
we pass to the complementary function F* of F. It is easy to show (cf. e.g. [2])
that F* is equivalent to a function whose principal part is G(x) = x| logx|7*™ !
where g~ + p~! =1. E; and Cg; consist only of x%.However Cg; turns out to
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contain infinitely many equivalent classes. Using, for example, the fact that for
O<e<fi=alg—1)

© Bd © ﬂd
u u = —¢ v v - -z -8
L <m> g fw(1+v> i Y as e

we get that

B et G(sx) ds g et logs ’ ds

qJ’ ® u b du

x —— —_—

1 \u+]|logx| ) u'*®

is equivalent to x(—logx)’. Clearly H,(x)/H (1)eCq . It follows that [ has

with
0 <y <« It is also clear from the discussion above that for any g Cy ; such

many Orlicz sequence spacesas quotient spaces e.g. all the space 1 _ 1o x)y
that g is not equivalent to a functionin Eg ; (i.e. to Gitselfor x%) I, is isomorphic
to a subspace of I; but not to a complemented subspace of I;. This example
shows among other things how much different Cy,; and C}. ; can be.

We turn next to an example defined and investigated by Lindberg [3] which
we would like to investigate here a little further.

EXaMPLE 2. Let F(x)= xP*sintos(~loex) A simple computation shows that if
p>1+ \/2~ then F(x) is an Orlicz function in some interval [0,x,] with xo > 0.
Put

U(x) = xF'(x}/F(x) = p + sin(log(— log x)) + cos(log(— logx))
Then for any 6 > 0, lim,_,o(U(tx) ~ U(¢)) = 0 uniformly for x in [§,1]. It follows
easily that whenever {,} is a sequence converging to 0 with lim,_, ,U(t,) = s then
F(xt,)[F(t,) converges uniformly to x° All these observations are due to
Lindberg [3].
The set E; consists thus exactly of the functions x *with s ranging over the

interval [p —./2, p + /2] while the set Cj consists of all the functions f(x)
which can be represented as

p+v2

f(x) = f xdu(s); 0=x=1
P—J2

for some probability measure y on [p — /2, p + /2. By taking, for example, u

to be uniformly distributed on [t, p + /2] we get a function equivalent to

— x'/logx.
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A simple computation shows that if fe Cp then lim,, f(tx)[f(f) = x° where
is the smallest number in the support of the measure p representing f. It follows
sn particular that F is not equivalent to any function in Cy and thus according to
Theorem 2 of [4], the space I has up to equivalence a unique symmetric basis
(i.e. if I is isomorphic to some I; then G must be equivalent to F).

This example shows also that in general Cy and Cy. are different (in Example 1
both sets consisted of the same single element). We shallshow that if fis equivalent
to a function in Cp and to a function in Cp. then f is already equivalent to a
function in E, i.e. to x*for some se [p — /2, p + /2]. Indeed, let fe Cg and let s
be the smallest number in the support of the measure y which represents f. If fis
not equivalent to x* then p({s}) = 0 and hence lim,_,, f(x)/x* =0 while E; = {x"}.
Let g € Cg. be such that g* is equivalent to f.

Then on the one hand

) lim g(y)/y"=o0, E,={y"}, r"'+s5st=1

y-=0
»nd on the other hand for some measure v on [t,,t,] (Where t;7 4 (p — \/E)-l =1
and ;' +(p+ 21 =1)

t2
(i) 90) = [y, 5 0sys1
14
Since (i) and (ii) are mutually contradictory, our assertion is proved.

ExaMmpLE 3. Weturn now to the example constructed inthe proof of Theorem 3
of [4], which will play the central role in this section. Let us first recall the definition
of the two Orlicz functions M(x) and N(x) used inthisexample.Letl <c<d < o0
be given, and let t,= 2"2""" , n=1,2,---.The functions M(x) and N(x) are
Orlicz functions (defined on [0,1]) which satisfy

O MD=NO=1,M'(1)=N({1)=c,
() cSExMX)IMX)Ed, c£x N'(x)/[N(x)Ld, 0<x <1
(111) M(t3n+1)/N(t3n+l) = '12"-1, forseme 0< A < 1: n= 1’29"'

and the following recursion relations (n =1,2,-:+)

M(x) = M(t3,+ ON(x[t3,4,)

t n g X g t " = tzn
N(x) = N(t3,4+IN(x[tz,41) } 3nt1 3n+2 = l3p41
M(X) =

2
ZX 213,43 = 3542

M(13,42)M(x [t3,42)
(iv) }t3n+2

N(x) = N(t3,42)N(x[t3,42)
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M(x) = M(t3,43)M(x[t3,43)
Lapsa DX 2 typpg =12
N(x) = N(t3n+3)M(x/t3n+3)} w3 EX S banra = lants

It is easily seen that such M and N exist (cf [4]). We begin by establishing a
further property of these functions.

LEMMA 1. For any integer n set j, =23"*'. Then for any non-negative

integer k at least one of the three functions
MQ27X) M2, i = kjps ki + Ju-1 Kju+ -1,
is equal to M(x) for 1 2 x = t;,,, and at least one of these functions is equal to
N(x) for 1 2 x = t3,,,. The same statement is valid for the functions
N(2-ix)/N(2—i)’ i= kjn’ k.]n +jn-1’ kjn + 4jn—1 .

Proor. We shall prove simultaneously all the assertions in the lemma by

induction on k (keeping n fixed). For k = 0 the assertions follow from the fact that
M(2°x)[M(2°) = M(x), N(2°x)[N(2°) = N(x),

and by the recursion relations (iv)

M2 1) [M(279" 1) = M(t354 1X) [M(t3,41) = N(X), t3,4; Sx <1,

and
NQ@ 4= 1%) [N(27%"1) = N(ta,43%) [N(t3p43) = M(x), t30 Sx=1.

This proves the lemma for k = 0. To illustrate the inductive step let us prove
the lemma for k = 1. Notice that for j, <i £2j, —j,—, and for t5,,, <x =<1
we have

— n~Jn =i —2jntin- — 7~ 2in _ 42
Bappa=2"7"227x 2270y, =27 =10 0.

Thus for such i and x

MQ27'%)[M(27") = M(t3,4427"X) [M(13,4,427") = N2 x) [N(2™")

where r = i — j,. A similar equation holds for N(2~'x)/N(2 ~%). This reduces the
case k=1 to the case k=0.

Suppose now the assertion of the lemma is true for k < r and let us prove it
for k =r > 1. Choose the integer m so that 2"~ < rj, < 2", and let s = 2"/,
which is an integer (a positive power of 2). For rj, <i < (r + 1)j,— j,—, and
tys1 Sx <1 wehave that 1, =272"7" 227Ix 2 270+ Dintdn-s > 2727
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= t2. Hence, by the recursion relations (iv), we get that for these i and x,
M(27x)/M(27%) is equal to either (depending on m (mod 3))
M(2—i+sj,,x)/M(2—i+sj,.) or N(z—i+sj"x)/N(2—i+sj")-

A similar statement holds for N(27'x)/N(27"). Thus we are reduced to the case
k = r — s for which the lemma holds by the induction hypothesis.

THEOREM 3. There exists a reflexive Orlicz sequence space which has no
complemented subspace isomorphic to an I, space, 1 <p <.

Proor. We claim that the space I,; with M the function considered above has
the desired property. By Theorem 2 it is enough to show that forevery 1 < p <
the function x? is strongly non-equivalent to E,,.

Let p > 1 be given, let n be an integer and let K = dg ' 2"*" " where d, = 2
while d and 4 (0 < A < 1) are the constants appearing in (ii) and (iii) above.

Consider now the 17-2% points 27%; k=1,2,---,17.2°" and assume there
exists s €(0,1) such that

K27 < M(s27%)M(s) S K27%%;  k=1,2,--,172"
Let the integer i satisfy the inequality 27+ < s £ 27", Using (ii) i.e. the A,
condition for M, we get
dy'M(2727) IM(27Y) £ M(s27%) [M(s) £ deM(27'27) [M(27).
It follows that
(doK) 127" s M2 270 IM(Q27Y) S doK27%%;  k=1,2,-,172%".
These inequalities can be rewritten as follows:
(doK) 712777 < M7 27 IMQTY) S(doK)277P;  j=1,2,-, 16-2%"
and
(doK)™1270F 2P < M(27H 279 277 IM(27) £ (doK)2 ™Y+
j=1,2,--,16-2%"

Dividing the corresponding inequalities and noticing that 2 “2"— t.,+1 We have
. MQAD ¢
(dOK) ztgn'l'-l é _—(*—_—iﬂ?é (dOK)ZthH-I; j = 192’ e} 16 - 23"-
M(z‘(“‘i))

Now, by applying Lemma 1 for the functions
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M@~ ) IMQTE); 1y, S X S 15 j=1,2,+,16- 2> =2j,, we find a pair
of indices r, and r,; 1 < ry, r, £ 16 - 2%" such that

M@~ x) M2 ) = M(x
( ) [M( ) (); b <xsl.
M(z—(i+rz)x)/M(2-(i+rz)) = N(x)

This means that
(doK) 2 841 S M(t3,4 ) < (doK)? Bt
(doK) 283,41 < N(t3,41) S(doK)* 85, 4,

which implies that (cf (iii)),

—mmt _ N(taeed) 4 _ g-2n—ha ,ogn=2
A —m:(doK) =(4 ) =2

>

and this contradicts the fact that 2 < 1. In conclusion, we have just shown that
M(x)and x?; p > 1satisfy the condition (+) of Section 2 with K = dj*4™%""* and
my =17 -2%. This means that for any > 0 my = o(K*) as K — co and thus,
x?; p>1 is strongly non-equivalent to E,,. Q.E.D.

If we look at the Orlicz sequence spaces from the point of view of the isomorphic
theory of Banach spaces, it is quite natural to identify two Orlicz functions G and
H provided Eg ; = Eg,,. The reason behind this statement is that if condition A,
holds for G and H then Eg,; = Ey , implies that [; is isomorphic to a comple-
mented subspace of Iy and vice-versa I isisomorphic to a complemented subspace
of I;; therefore, by using Pelczynski’s decomposition method [6] (which is also
described in the lastlines of the proof of [4] Theorem 3) it follows that I; and I, are
isomorphic.

With this identification in mind we can introduce a partial order in the class of
all Orlicz functions as follows: G<H<>GeEy ;.

This leads us to the following definition.

DEFINITION 2. An Orlicz function G is called minimal if E; | = Ey; , for every
HekEg,.

A standard application of Zorn’s Lemma to the set of Orlicz functions in
Ep,; endowed with the previously introduced order proves that:

For every Orlicz function F on [0,1] satisfying the A, condition there exists
at least one minimal Orlicz function G in Eg ;.
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Minimal Orlicz sequence spaces have the following interesting property.

THEOREM 4. Let G be a minimal Orlicz function, and let {e;} be the unit
vector basis of lg. Then every block basis {u,} with respect to {e;} which has the
form u, =0, X, . e (where {6,} are mutually disjoint finite subsets of the

integers and oy # 0, scalars) spans a subspace isomorphic to l; itself.

Proor. Let U = span{u,}. We assume as we may, that | u, | = 1 for every k.
For y = X,/,e;el; we shall denote ZiG(]/Ii]) by y(y). There is a contractive
projection P from I; onto U defined by

Py = Z ( 2 l,)uk/dknk ify = Ziliei,

k=1 \ieox

where n, denotes the number of elements in ¢,. By the convexity of G

WPy = T nG (
k=1

7 /nk) <% % 6(|u)s10).

iea k=1 icow

Let G(t) = y(tu,) = nkG(|ock|t), 0<t<1.Then G €Eg, and there is a subse-
quence {k;} of the integers such that |ij(t)—H(t)| 277,011, for some
HeEg,. The subspace U, =span {u,,} isisomorphic to Iy and there is a
projection from U onto U, Since G is minimal, G € Eg ; and thus Iy has a com-
plemented subspace isomorphic to I;.We shall use these facts and aslight variant of
Pelczynski’s decomposition method [6] to show that I; ~ U (& denotes iso-
morphism).

For a subspace W of I; we define (W ® W @ --- ), as the space of all sequences
¥ =(¥1,2,++) such that each vector y,e W and I'(y) = 2,2, 7(y,) < . The
norm is defined as usual ” y “ = {inf ¢ > 0, I'(y /) < 1}. Observe that in general
(W@ W@ ) does not coincide with the space of all the y = (y,,,, ) such
that (l.V1 ”a H V2 ‘,"')EZG-

Consider the subspace U of I, the projection P onto U and let W = kernel P.
Since G satisfies condition A, (with constant K say) we have for every choice
of scalars 4; and p; that

Z G([h+uhs T c@max(a) luib)gK( T 6(h)+ £ G(Iui[))

and hence y(y — Py) < 2Ky(y) for every yel,. It follows that
(@@ ) (UW)OUAW)®)q
~rU(Wo)o(Wa)® )~ U,
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Since we have also that U ~ I; @ X for some Banach space X we deduce that
U=l @ U = |; as desired.

REMARK. M. Zippin [8] has shown that if {e,} is a basis of a Banach space
such that for every normalized block basic sequence {u,} of the form appearing
in the statement of the theorem, {¢;} is equivalent to {u;} then {e;} is already
equivalent to the unit vector basis of ¢, or I, for some 1< p < 0. There are
minimal Orlicz functions G which are not equivalent to any function x?(see below).
For such functions G, the isomorphism from I; onto U is not in general induced
by mapping the {¢;} to the vectors {u;}.

Let M be the Orlicz function of Example 3 above. Since by Theorem 3, Ey ;
does not contain a function equivalent to any x?, it follows by the remark preceed-
ing Theorem 4 that E,, ; contains a minimal function G which is not equivalent
to any x”. It is perhaps worthwhile to note that M itselfis equivalent to a minimal
Orlicz function as is shown in the following Proposition.

PROPOSITION 1. Forany G € Ey ; there exists an Orlicz function M| equivalent
to M such that M, €Eg;,,.

Proor. Let s,; 0<5,<1; n=1,2,-- be such that
[ M(5,%)[M(s,) = G(x)| < G(ts546)/2; n=1,2,; 0Sx Z L.
Choose integers i, such that 27(»*D « 5 <27 p =1,2,-.- Then
dg 'M(27x) [M(27") £ M(s,%)[M(s,) S deM(27"x) [M(2™"); n = 1,2,
0sxg1
which implies

45" (on - Hied) < Zz;‘) <do (06) + X )i n = 1,2,

and thus

(do 1 (2)G(x) £ M(Q27"x) [M(27") £ (3do [2)G(x); n=1,2,-; t36Sx <1

Since 271672 ¢, =2717 " > 22" t3,46 it follows that

(ds /D627 = M2T"27) [M(27) £ (34 [2)G(279);n=1,2,7+;
j=1,2,---,162%"

and
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(d5/2)G(2772) £ M(27"27/2) [M(27") £ (35 /2)G(22); n =1,2, -+ ;
j=12,0016-2% 0, S22 1
Dividing the corresponding inequalities we obtain

~J =(inth) -
G2 ) s M Z)§3dozG(2 Z); n=12-j=12,;16.2°"
G277y M2 0D G(277)

(d57%13)

t3n+l§z§1

By Lemma 1 there exists an integer r,; 1 < r, < 2j, such that

M(Z—(in+r")z)/M(z"(in+rn)) — M(Z); n= 1’2,,,,; fane1 <z <1.
Hence
d32[3)G(27" 2)[G(2™™) S M(2) £3d3G(272)[G(2™™)in=1,2,-;15,,, Sz 1.

Since G(27""x)/G(2" ™) contains a subsequence converging uniformly on[0,1]
to a function M, €Eg , it follows that

(dg YIM,(x) S M(x) £3dIM(x); O0<x=1

which means that M, is equivalent to M. Q.E.D.
Our next proposition shows that the collection of sets Ep with i reflexive is

closed under unions (up to equivalence).

ProOPOSITION 2. Let F and G be Orlicz functions such that Ip and I; are reflex-
ive. Then there exists an Orlicz function H such that ly is reflexive and with Ey
equal up to equivalence to Ep, UE;,. There exists also an Orlicz function

H with 1 reflexive and Eg equal, up to equivalence to Ep U Eg,.

ProOF. We assume that F and G are defined on [0,1] and normalized so that
F(1)=G(1)=1. Since Iy and Il; are reflexive there is a ¢>1 such that
xF'(x)/F(x) Z ¢ and xG'(x)/G(x) = c for every x€[0,1]. There is no loss of
generality to assume that F'(1) = G'(1) = c. Indeed, we have simply to replace F
by the equivalent function F{x)}=max{(F(x),c(x-1)+1), 0<x=<1 (and
similarly for G).
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Let " =272"""; n=1,2,--- and define H(x) by

(F(x) t,=1<x<1

H(t2n—l)G(x/t2n—1) t2n é X é t2n—1
H(x) =

H(t;,)F(x [t5,) bans1 SX S 1y,

0 x=0

By Lemma 2 of [4] H is an Orlicz function on [0,1] with I reflexive. Since
H(t,,_x)[H(t;,-1) = G(x) for t,, , < x = 1it follows that G belongs to Ey and
thus Eg,, < Eg. Similarly Ep; cEy.

Let now h(x) =lim,, H(xs,)/H(s,)€Ey. Choose n,, so that ¢, ,, <s,<t,
and let u, =s,/t, +;. By passing to a subsequence we may assume that
u =lim,, u,, exists (finite or infinite) and that e.g. all the n,, are even. If u < 00

then the A, condition for H implies that h(x) is equivalent to
lim,, H(xt, )/ H(t, .,)=G(x).If u = oo then

H(xs,) [H(3p) = F(xSpty,! ) [F(smty); ' Sx =1

mon,,

and hence h € Eg,;. (If the n,, are odd then either h is equivalent to F or he Eg ;.)

To prove the second part we just write down the definition of A and leave the
details to the reader

] : <x<
ﬁ(x) _ {H(th)Fn(x/th)’ t2n+1 =X= t2n n= 0,1,2,_‘_

H(t2,+1)G,(X/t2541)5 tans2 £ X Z typiq

i

where H(1) = H(t,) = 1 and F,(x) is an Orlicz function on [0,1] satisfying
F() =1,F/1) = ¢ £ xF,(x)[F(x),0 £ x £ 1,and K~! L F,(x)F2~")/F(2~"x)
< K for some K independent of x and n (G,(x) satisfies the same requirements
only with F replaced by G).

COROLLARY. Let I and l; be reflexive Orlicz sequence spaces. Then there
exists a reflexive Orlicz sequence space which contains a complemented subspace
isomorphic to I; ® I;.

Proor. Let H be the function constructed in the previous proposition. Then I
and I; are both isomorphic to complemented subspaces of I, and the result
follows from the fact that I ® I, =~ Ig.
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RemARK. We did not check whether Proposition 2 and its Corollary hold
without the reflexivity assumption.

ExampLE 4. Let 1 < p<r < oo and consider the function H(x) obtained by
applying Proposition 2 to F(x)=x” and Gy(x)=x". Here we can take p as the ¢
appearing in the proof of Proposition 2. In order to use the definition of H given
there we have to replace Gy(x) by G(x) =max(x", p(x —1)+1),0=x < 1. Up
to equivalence, Ej consists only of two functions, x? and x". The closed convex
hull Cy of Ey contains functions equivalent to x° for every se[p, r]. Indeed, for
1 £ u < oo define h(x) =lim, H(ut,,_,x)/H(ut,,_,) € Ey. Then

J'x" u~li<x=<1 rx" u"lgxg1
h(x) = = Jlu"’(p(ux -D+1) xutsxgut
uPGux) 0Zx=<u"! Lu7x 0<x<xou™!

where x, is defined by xp =p(xo—1)+1, 0<xs<1. For l<a<r—p+1
consider

7o) = [ houdu

o1

xo/% 1/x o
= f WP du + f w P (plux — 1) + ) du + f xPu""du.

1 xo/x 1/x
Then f,(x)/f,(1) € Cy and f,(x) = Kx"** ! + o(x***™") as x — 0, for a suitable
positive constant K,, so that f,(x) is equivalent to x?**~1. A similar computation
shows that for ' <s’'<p’ (where 1/r'+1/r=1 and 1/p'+1/p=1)
x* is equivalent to a functionin Cy. where H* is the complementary function to
H. Thus we have that se[p,r]<>I; is isomorphic to a subspace of I;< 1 is
isomorphic to a quotient space of I;. On the other hand [, is isomorphic to a
complemented subspace of I iff s = p or s =r. In order to prove this assertion
it is enough (by Theorem 2) to show that for p < s < r, the function x*is strongly
non-equivalent to Ep ;.

Let n be an integer and let K =2"" 2" Where o = min(r —s,s — p) > 0.
A simple verification shows that for every i > 2"*! thereisa j < 2"+! such thatthe
number H(27277)/H(27%) - 27% is outside the interval [K ™%, K]. Put x; =277;
j=1,-,2"*! and for 2"*! <j < 2"*? choose x; so that
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HE ) [HE Y )
is outside [K~!, K]. Then for every 0 < t <1 thereisa 1 £j<2"*? such that
H(tx;)/H(1)x} is outside [K~'2%, K27%] where d is the A, constant of H (actually
d = r). This proves that x® is strongly non-equivalent to Ey ;.

Proposition 2 can be generalized to the case where instead of the union of two
sets of the form E; we consider suitable infinite unions. We shall state here only
one such generalization which shows that the class of Orlicz functions, with the

order defined above, has also relative maximal elements.

ProPoOSITION 3. Let 1 <c<d< 0. Then there is an Orlicz function
H(x)=H,_ (x) such that c<xH'(x)/[H(x)<d for 0<x =<1, and for every
Orlicz function Fwithc £ x F'(x)[F(x)£d;0 < x £ 1, thereis a function equi-
valent to F in Ey.

To prove the proposition we need first the following lemma.

LEMMA 2. Let g(x) be an Orlicz function on [0,1] such that ¢ < xg'(x)[g(x)
<d;0<x =1, and ¢ > 1. Then there exists an Orlicz function G(x) on [0,1]
such that

1) G is equivalent to g
2)G(H)=1;G'N)=c¢
3) c=2xG'(x)]G(x)2£d;0<x L1,

Proor. We may clearly assume that g(1) =1 and thus x° < g(x) < x* for all
x€[0,1]. For 0 < x, < 1 we define x, by the equation

(g’ (%) (%3 — x1) + 9(x1)) = g'(x,)%5-
It is easily checked that x; < x, < x, c(d —1)/d(c — 1); hence if we choose
x, small enough we get that x, < 1. Define now g(x) by

g(x) 0sx=x
8(x) = 49(x1) +g'(x)(x —x,) 3 X <XZ2Xy
[9(x) + 9" (x)(x; = x)](x/x;)° X <x=1.
Then the function G(x) = §(x)/#(1) has all the desired properties.

PROOF OF THE PROPOSITION. Let {F,(x)}, -1 be a dense sequence in the subset of
C(0,1) consisting of all Orlicz functions G which satisfy G(1) =1, G'(1) = ¢ and

cExG'(X)/G(x)Sd; 0<x =<1 Lett,=2"2""; n=1,2,-- and define
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Fi(x) hs<xs1
H(X) = H(tn)Fn(x/tn) > tn+1 —S.. X <t h= 1a2,"'
0 x=0

Then, in view of Lemma 2, H has all the desired properties.
Interms of Orlicz sequence spaces, Proposition 3 shows the existence of universal

elements,

COROLLARY. For every 1 <c <d = o there is an Orlicz function H(x) with
c<xH'(x)[H(x) £d; 0<x £ 1, such that for any Orlicz function F(x) with
cSxF'(x)[F(x)=d; 0<x £1, Iy is isomorphic to a complemented subspace
of ly.

REMARKS, (1). It is clear that Iy is determined uniquely, up to isomorphism,
by ¢ and d. On the other hand H is not determined uniquely up to equivalence.
Hence I does not have up to equivalence a unique symmetric basis.

(2) Ifc~* +d~!' =1,the space I; obtained in the Corollary gives a non-
trivial example of a space with a symmetric basis which is isomorphicto its

conjugate.

4. Problems and comments

The results and examples obtained in [4] and in the previous sections lead
naturally to some specific open problems as well as to some general directions in
which further research scems to be desirable. This section is devoted to a discussion
of such problems and research directions.

The most obvious question left open by our discussion is

ProBLEM 1. Assume I, is isomorphic to a complemented subspace of I. Is f
equivalent to a function in Eg ;?

A positive answer to Problem 1 would show that I is isomorphic to I; iff
Eg. = Eg,q, up to equivalence and thus that /; has up to equivalence a unique
symmetric basis iff every G for which Eg;,; = Ef,; (up to equivalence) is already
equivalent to F.

A Banach space X is called prime if every infinite dimensional complemented
subspace of X is isomorphic to X. At present the only known prime spaces are ¢,
and 1,; 1 £ p £ 0. The results and examples of Section 3 suggest that among the
separable Orlicz sequence spaces there are new examples of prime spaces.
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ProBLEM 2. Assume that F is a minimal Orlicz function. Is I a prime Banach
space?

Problems 1 and 2 are special cases of the general question ‘“what can be said
about the structure of complemented subspaces of an Orlicz sequence space’’
Another aspect of this guestion which will probably play a role in the solution of
Problem 2 is

ProBLEM 3. Let X be a complemented subspace of a separable Orlicz sequence
space Ip. Does X have an unconditional basis ?

Let us remark that in general such an X need not have a symmetric basis (e.g. X
canbel, @I, withp #r).

In [4] we showed that for every Orlicz function F the set C,. contains x? for
some p = 1. The set of numbers p such that x? € Cy deserves further study. Let us
note that if I, = [, then Theorem 1 can be formulated in a simpler manner. The
space [, is isomorphic to a subspace of Iy iff x” € Cr. Indeed, assume that g is
equivalent to x? and g € Cr,;. Then C, = Cy and by the result of [4] mentioned
above x? € C, for some g. Clearly this ¢ must be equal to p and hence x? € Cj.

Let usalso note that the proof of Theorem 1 of [4] shows that if f e C, then the
following slightly stronger assertion than that of Theorem 1 here holds: For
every ¢ > 0 there is a linear operator T,: I, — Ir such that (1 —¢) ”x ” = ” T.x H
< (1 +¢#) | x|, x el,.(If such a situation holdsit is said that I, is almost isometric
to a subspace of /). That this is the case is seen by taking the u, appearing in the
proof of Theorem 1 of [4], to be sufficiently close to 1. The preceeding two
observations show that if for some p and F, I, is isomorphic to a subspace of I,
then [, is almost isometric to a subspace of /.

We mention two specific problems (probably much easier than the preceeding
ones) concerning the set of p’s such that x? e Cz.*

ProBLEM 4. Let F be a reflexive Orlicz sequence space. Does there always
exist a p such that [, is isomorphic to a subspace as well as to a quotient space of
Ip? (ie. xX*eCy and x?€ Cp, Where g~ +p~1=1).

ProBLEM 5. Is the set of numbers p such that x? € C always an interval?

Orlicz sequence spaces form a special subclass of the larger class of all Banach
spaces with a symmetric basis. The statement of several of the results which we
obtained for Orlicz sequence spaces make sense for thislarger class. It is natural to

* See the note added in proof.
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ask whether the results are still valid in the more general setting. Let us mention
for example

PrOBLEM 6. Doesevery Banachspace X with a symmetric basis have a subspace
isomorphic to ¢, or [, forsome 1 < p< 0 ?

This question has been asked in several places for arbitrary Banach spaces. It
seems very likely that for spaces with symmetric bases it will be easier to settle
this problem.

There is a class of symmetric spaces that are not in general Orlicz spaces, which
have received some attention in the literature (cf [1] and its references). Let p > 1
and let w = {w,} be a decreasing sequence of positive numbers such that X w, = o
and lim,w, = 0. We denote by u(w, p) the space of all sequences {x,} =x such that
[ |7 = sup Z,,| xy|? Wa < 0 where the sup is taken over all permutations n
(the sup is clearly attained by any permutation z for Which |X,g| 2 | Xxe+n |3
n=1,2,---). The space u(w,p) is reflexive if p > 1. It is easy to verify that for
X = u(w,p) the answer to Problem 6 is positive in the following stronger form

PROPOSITION 4. For every p 2 1 and every w = {w,} the space u(w,p) has a
complemented subspace isomorphic to 1,

Proor. Choose a sequence of integers 0 = r; < r,--- such that r,,, >2r, +1
and

L e £
X w2z wi; n=12,.

i=r.+1 i=

>
3

[

This is possible since X,w, = + . Let ¢;; i = 1,2,--- denote the unit vectors
of u(w,p) and set

Fr+1 Ta+1~Tn i/p
U, = 2 ei/( 2 Wi 3 n=1a21"'
i=1

i=r,+1

Obviously, the vectors u,; n =1,2,-- form a normalized block basis of {¢;} with
constant coefficients.

Let 4,; n=1,2,---k be a finite sequence and let = be a permutation of the
integers {1,2,---,k} such that

Fr(n)+1 " Fr(n)

Iln(,,)lp/ Z w;; n=1,2,---k

i=1

forms a non-increasing sequence. Then
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Fr(n)+1 " Pa(n) Pr(n)+1 " Fr(n)
<,’1n(n)| / > wp | p> Wits,

p

k
Y Au,

Tle

i=1 i=1

where i, = E;f;} (Pejy+1-Tn(j))- Since w, is a nonincreasing sequence it follows
immediately that

k
2 Au,

(é |4, )1/1:

On the other hand

k k 1~ fp Fnt1=Py
T hu |’z T (]mv/ 3 wi>~ S Wi,
n=1 n=1 i=1

i=1

since Z}';,’ (rj+1 — r;) = r, In view of our choice of r, we have

n+t=rn LS Bt £ Tn+1—Fp Fn+1—rp
z wH,"/ T ow=z X wi/(z w,+ X w);%; n=1,2,.- k,
1= 1

i=1 i=1 i=ra+1 1 i=r,+1

—1/p<§ 'ln|p>1/p
n=1

This shows that the closed subspace of u(w,p) spanned by the vectors u,;

which implies

k
Y Au
n=1

n=1,2,--- is isomorphic to I,. This subspace is complemented in view of [5]
Lemma 4 and therefore the proof is completed.

It is perhaps of interest to comment on the relation between the spaces u(w, p)
and the class of Orlicz sequence spaces. Since the only symmetric bases in an
Orlicz sequence space are those which are induced by Orlicz functions, it follows
that u(w, p) is isomorphic to an Orlicz sequence space iff there is an Orlicz function
F (satisfying, of course, the A, condition) such that for decreasing sequences of
positive numbers {4,}i-{, X A/w, < oo iff X F(1,)<oo. Sometimes, there exists
such a function F. For example if p21 and w,=(log n)~! then as is easily
checked F(x) = x"/, logx| has the desired property. On the other hand if w, = n~*!
or more generally if e.g. lim inf,_, , S;,/S, =1 for every k where S, = X/, w;,
then such an F does not exist. Indeed it follows easily that if a function F exists
then the sequence mF(S, /") m = 1,2, - is bounded and bounded away from 0.
Using the A, condition for F, it is easy to deduce that for sufficiently large k
liminf,, , S,,/S, is greater than 1.

It is clear that for no sequence w = {w,} (with w, —» 0 as we always assume) is
the function F(x) = x? a suitable function. Hence u(w,p) is never isomorphic

to 1.
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Note added in proof.
The answer to problems 4 and 5 is affirmative. Let F(t) be an Orlicz function
satisfying the A, condition and set

ap = sup{p; sup F(tx)/F(t)x? < 0}

0<x,=1

inf{p;{p; inf F(tx)/F(t)x? > 0}.

0<x.t51

it

Br

Then the following holds:

THEOREM The space 1, is isomorphic to a subspace of Ip iff pe[ag Br].

The interval [og, B¢] coincides with the interval associated to an Orlicz space
I in several places in the literature (e.g. in [3]). The following corollary gives a
strong answer to Problem 5.

CoROLLARY. Let Ip be a reflexive Orlicz sequence space. The space 1, is iso-
morphic to a subspace of Iy iff it is isomorphic to a quotient space of .

It can be shown that the interval associated to the space of Example 3 (in
Section 3 above) is a single point.

Details will be published elsewhere.
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